Shortest Interpolating Curves with Constrained Curvature

A realistic generalization of the Markov–Dubins problem, which is concerned with finding the shortest planar curve of constrained curvature joining two points with prescribed tangents, is the requirement that the curve passes through a number of prescribed intermediate points/nodes. We refer to this generalization as the Markov–Dubins interpolation problem. We formulate this interpolation problem as an optimal control problem and obtain results about the structure of its solution using optimal control theory. The Markov–Dubins interpolants consist of a concatenation of circular (C) and straight-line (S) segments. Abnormal interpolating curves are shown to exist and characterized; however, if the interpolating curve contains a straight-line segment then it cannot be abnormal. We derive results about the stationarity, or criticality, of the feasible solutions of certain structure. In particular, any feasible interpolant with arc types of CSC in each stage is proved to be stationary, i.e., critical. We propose a numerical method for computing Markov–Dubins interpolating paths. We illustrate the theory and the numerical approach by four qualitatively different examples.

[1]  Liqun Qi,et al.  A Newton Method for Shape-Preserving Spline Interpolation , 2002, SIAM J. Optim..

[2]  Xavier Goaoc,et al.  Bounded-Curvature Shortest Paths through a Sequence of Points Using Convex Optimization , 2013, SIAM J. Comput..

[3]  F. Clarke,et al.  Applications of optimal multiprocesses , 1989 .

[4]  C. Kaya,et al.  Computational Method for Time-Optimal Switching Control , 2003 .

[5]  Gerhard Opfer,et al.  On the Construction of Optimal Monotone Cubic Spline Interpolations , 1999 .

[6]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[7]  Charles A. Micchelli,et al.  ConstrainedLp approximation , 1985 .

[8]  Tal Shima,et al.  Motion planning algorithms for the Dubins Travelling Salesperson Problem , 2015, Autom..

[9]  Miguel A. Herrero,et al.  Self-similar blow-up for a reaction-diffusion system , 1998 .

[10]  Asen L. Dontchev,et al.  Best interpolation in a strip , 1993 .

[11]  M. Kreĭn,et al.  The Markov Moment Problem and Extremal Problems , 1977 .

[12]  José Mario Martínez,et al.  On Augmented Lagrangian Methods with General Lower-Level Constraints , 2007, SIAM J. Optim..

[13]  G. Brunnett,et al.  Fair curves for motion planning , 1999 .

[14]  H. Maurer,et al.  Optimization methods for the verification of second order sufficient conditions for bang–bang controls , 2005 .

[15]  C. Yalçin Kaya,et al.  Finding Interpolating Curves Minimizing LINFINITY Acceleration in the Euclidean Space via Optimal Control Theory , 2013, SIAM J. Control. Optim..

[16]  G. Aronsson Perfect splines and nonlinear optimal control theory , 1979 .

[17]  Gerhard Opfer,et al.  The derivation of cubic splines with obstacles by methods of optimization and optimal control , 1987 .

[18]  D. McClure Perfect spline solutions of L∞ extremal problems by control methods , 1975 .

[19]  C. Y. Kaya,et al.  A global control law with implications in time-optimal control , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[20]  José Mario Martínez,et al.  Practical augmented Lagrangian methods for constrained optimization , 2014, Fundamentals of algorithms.

[21]  H. Maurer,et al.  Second order sufficient conditions and sensitivity analysis for optimal multiprocess control problems , 2000 .

[22]  V. K. Isaev,et al.  To the theory of optimal splines , 2010, Appl. Math. Comput..

[23]  C. Yalçin Kaya,et al.  A numerical method for nonconvex multi-objective optimal control problems , 2014, Comput. Optim. Appl..

[24]  Jean-Daniel Boissonnat,et al.  Shortest paths of Bounded Curvature in the Plane , 1991, Geometric Reasoning for Perception and Action.

[25]  Andrei V. Dmitruk,et al.  Quadratic order conditions for bang-singular extremals , 2011, 1107.0161.

[26]  C. Yalçın Kaya,et al.  Markov–Dubins path via optimal control theory , 2017, Comput. Optim. Appl..

[27]  Emilio Frazzoli,et al.  Traveling Salesperson Problems for the Dubins Vehicle , 2008, IEEE Transactions on Automatic Control.

[28]  Helmut Maurer,et al.  Applications to Regular and Bang-Bang Control - Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control , 2012, Advances in design and control.

[29]  Ilya V. Kolmanovsky,et al.  Best interpolation in a strip II: Reduction to unconstrained convex optimization , 1996, Comput. Optim. Appl..

[30]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[31]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[32]  A. M. Kaganovich,et al.  QUADRATIC ORDER CONDITIONS FOR AN EXTENDED WEAK MINIMUM IN OPTIMAL CONTROL PROBLEMS WITH INTERMEDIATE AND MIXED CONSTRAINTS , 2010 .

[33]  C. Kaya,et al.  Computations for bang–bang constrained optimal control using a mathematical programming formulation , 2004 .

[34]  Clyde F. Martin,et al.  Optimal control of dynamic systems: Application to spline approximations , 1998, Appl. Math. Comput..

[35]  C. Yalçın Kaya,et al.  Computations and time-optimal controls , 1996 .

[36]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .