New Results in the Theory of Packing and Covering
暂无分享,去创建一个
[1] Ludwig August Seeber. Recension der "Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber". , 1840 .
[2] A. Korkine,et al. Sur les formes quadratiques positives quaternaires , 1872 .
[3] A. Korkine,et al. Sur les formes quadratiques , 1873 .
[4] G. Zolotareff,et al. Sur les formes quadratiques positives , 1877 .
[5] H. F. Blichfeldt. The minimum value of quadratic forms, and the closest packing of spheres , 1929 .
[6] P. Tammes. On the origin of number and arrangement of the places of exit on the surface of pollen-grains , 1930 .
[7] H. F. Blichfeldt. The minimum values of positive quadratic forms in six, seven and eight variables , 1935 .
[8] R. Kershner. The Number of Circles Covering a Set , 1939 .
[9] Edmund Hlawka. Zur Geometrie der Zahlen , 1943 .
[10] C. H. Dowker. On minimum circumscribed polygons , 1944 .
[11] Robert A. Rankin,et al. On the Closest Packing of Spheres in n Dimensions , 1947 .
[12] C. A. Rogers. The closest packing of convex two-dimensional domains , 1951 .
[13] H. P. F. Swinnerton-Dyer,et al. Extremal lattices of convex bodies , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] L. Few. The Double Packing of Spheres , 1953 .
[15] H. Coxeter. Arrangements of equal spheres in non-Euclidean spaces , 1954 .
[16] R. Bambah,et al. On lattice coverings by spheres , 1954 .
[17] R. Rankin. The Closest Packing of Spherical Caps in n Dimensions , 1955, Proceedings of the Glasgow Mathematical Association.
[18] W. Blundon. Multiple covering of the plane by circles , 1957 .
[19] H. Hadwiger,et al. Über Treffanzahlen bei translationsgleichen Eikörpern , 1957 .
[20] G. C. Shephard,et al. The difference body of a convex body , 1957 .
[21] C. A. Rogers. A note on coverings , 1957 .
[22] C. A. Rogers. The Packing of Equal Spheres , 1958 .
[23] C. A. Rogers. Lattice Coverings of Space: The Minkowski–Hlawka Theorem , 1958 .
[24] A. Heppes. Mehrfache gitterförmige Kreislagerungen in der Ebene , 1959 .
[25] H. Coxeter,et al. Covering space with equal spheres , 1959 .
[26] C. A. Rogers. Lattice coverings of space , 1959 .
[27] C. Shannon. Probability of error for optimal codes in a Gaussian channel , 1959 .
[28] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[29] Oscar Wesler. An infinite packing theorem for spheres , 1960 .
[30] Helmut Groemer,et al. Über die Einlagerung von Kreisen in einen konvexen Bereich , 1960 .
[31] W. M. Schmidt. Zur Lagerung kongruenter Körper im Raum , 1961 .
[32] P. Erdös,et al. Covering space with convex bodies , 1962 .
[33] E. Bender. Area-Perimeter Relations for Two-Dimensional Lattices , 1962 .
[34] Helmut Groemer,et al. Existenzsätze für Lagerungen im Euklidishen Raum , 1963 .
[35] C. A. Rogers. Covering a sphere with spheres , 1963 .
[36] W. Blundon. Multiple Packing of Circles in the Plane , 1963 .
[37] W. Schmidt. On the Minkowski-Hlawka theorem , 1963 .
[38] Note on a paper of a. heppes , 1963 .
[39] N. M. Blachman,et al. Multiple packing of spherical caps , 1963 .
[40] L. Few. Multiple Packing of Spheres , 1964 .
[41] J. Leech. Some Sphere Packings in Higher Space , 1964, Canadian Journal of Mathematics.
[42] Some Lower Bounds for Density of Multiple Packing , 1964, Canadian Mathematical Bulletin.
[43] P. Erdos,et al. THE AMOUNT OF OVERLAPPING IN PARTIAL COVERINGS OF SPACE BY EQUAL SPHERES , 1964 .
[44] C. A. Rogers,et al. On coverings with convex domains , 1964 .
[45] C. A. Rogers,et al. Packing and Covering , 1964 .
[46] E. Gilbert. Randomly Packed and Solidly Packed Spheres , 1964, Canadian Journal of Mathematics.
[47] P. Davis. Simple quadratures in the complex plane. , 1965 .
[48] A. Wyner. Capabilities of bounded discrepancy decoding , 1965 .
[49] J. Schaer. The Densest Packing of 9 Circles in a Square , 1965, Canadian Mathematical Bulletin.
[50] A. Meir,et al. On a Geometric Extremum Problem , 1965, Canadian Mathematical Bulletin.
[51] D. Slepian,et al. On the optimality of the regular simplex code , 1966 .
[52] D. Larman,et al. On the exponent of convergence of a packing of spheres , 1966 .
[53] Z. A. Melzak. Infinite Packings of Disks , 1966, Canadian Journal of Mathematics.
[54] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[55] D. Larman. A note on the Besicovitch dimension of the closest packing of spheres in Rn , 1966, Mathematical Proceedings of the Cambridge Philosophical Society.
[56] Helmut Groemer. Zusammenhängende Lagerungen konvexer Körper , 1966 .
[57] K. Hirst. The Apollonian Packing of Circles , 1967 .
[58] John Leech,et al. Five Dimensional Non-Lattice Sphere Packings , 1967, Canadian Mathematical Bulletin.
[59] Double covering with spheres , 1967 .
[60] A variant of the problem of the thirteen spheres , 1967 .
[61] S. Kravitz. Packing Cylinders into Cylindrical Containers , 1967 .
[62] D. Larman. On the Besicovitch Dimension of the Residual Set of Arbitrarily Packed Disks in the Plane , 1967 .
[63] J. Wilker. Open Disk Packings of a Disk , 1967, Canadian Mathematical Bulletin.
[64] L. Few. Double packing of spheres: a new upper bound , 1968 .
[65] Ein Satz über konvexe Mengen und Gitterpunkte , 1968 .
[66] D. Larman. On Packings of Unequal Spheres in Rn , 1968, Canadian Journal of Mathematics.
[67] J. Leech. Six and Seven Dimensional Non-Lattice Sphere Packings , 1969, Canadian Mathematical Bulletin.
[68] Z. A. Melzak. On the Solid-Packing Constant for Circles , 1969 .
[69] U. Pirl. Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten , 1969 .
[70] L. Tóth. Scheibenpackungen konstanter Nachbarnzahl , 1969 .
[71] D. Boyd. Osculatory Packings by Spheres , 1970, Canadian Mathematical Bulletin.
[72] N. Sloane,et al. New sphere packings in dimensions 9–15 , 1970 .
[73] Michael Goldberg. The Packing of Equal Circles in a Square , 1970 .
[74] D. Boyd. Lower Bounds for the Disk Packing Constant , 1970 .
[75] B. Delone,et al. A NEW CONSTRUCTION IN THE THEORY OF LATTICE COVERINGS OF AN n-DIMENSIONAL SPACE BY EQUAL SPHERES , 1970 .
[76] Volumen und Oberfläche eines Eikörpers, der keine Gitterpunkte überdeckt , 1970 .
[77] Douglas J. Hoylman. THE DENSEST LATTICE PACKING OF TETRAHEDRA , 1970 .
[78] M. Goldberg. Packing of 14, 16, 17 and 20 Circles in a Circle , 1971 .
[79] N. Sloane,et al. Sphere Packings and Error-Correcting Codes , 1971, Canadian Journal of Mathematics.
[80] D. Boyd. On the Exponent of an Osculatory Packing , 1971, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.
[81] A. Beck,et al. Packing convex sets into a similar set , 1972 .
[82] K. Böröczky. Über die Newtonsche Zahl regulärer Vielecke , 1971 .
[83] David W. Boyd,et al. The disk-packing constant , 1971 .
[84] G. D. Chakerian,et al. Geometric Extremum Problems , 1971 .
[85] Packing of convex sets in the plane with a great number of neighbours , 1972 .
[86] Jörg M. Wills,et al. Eine Ungleichung zwischen Volumen, Oberfläche und Gitterpunktanzahl konvexer Körper imn-dimensionalen euklidischen Raum , 1972 .
[87] N. J. A. Sloane,et al. Sphere packings constructed from BCH and Justesen codes , 1972 .
[88] G. Butler,et al. Simultaneous Packing and Covering in Euclidean Space , 1972 .
[89] V. Dumir,et al. Lattice double packings in the plane , 1972 .
[90] Béla Bollobás,et al. The optimal structure of market areas , 1972 .
[91] G. Tóth. Covering the plane by convex discs , 1972 .
[92] D. Boyd. Disk Packings which have Non-Extreme Exponents , 1972, Canadian mathematical bulletin.
[93] J. Wilker. THE INTERVAL OF DISK PACKING EXPONENTS1 , 2010 .
[94] D. Boyd. Improved bounds for the disk-packing constant , 1973 .
[95] G. Tóth,et al. Sum of moments of convex polygons , 1973 .
[96] J. Linhart. Die Newtonsche Zahl von regelmässigen Fünfecken , 1973 .
[97] D. Boyd. An Algorithm for Generating the Sphere Coordinates in a Three-Dimensional Osculatory Packing , 1973 .
[98] L. Tóth,et al. On totally separable domains , 1973 .
[99] V. Dumir,et al. A conjecture of Fejes Tóth on saturated systems of circles , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.
[100] G. Purdy. The lattice triple packing of spheres in Euclidean space , 1973 .
[101] D. Boyd. The residual set dimension of the Apollonian packing , 1973 .
[102] Über Einige Vermutungen Von L. Fejes Tóth , 1973 .
[103] V. Dumir,et al. Saturated systems of symmetric convex domains; results of Eggleston, Bambah and Woods , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.
[104] David W. Boyd,et al. The Osculatory Packing of a Three Dimensional Sphere , 1973, Canadian Journal of Mathematics.
[105] The Optimal Arrangement of Producers , 1973 .
[106] L. Fejes Tóth,et al. On the density of a connected lattice of convex bodies , 1973 .
[107] L. Fejes Tóth,et al. Five-neighbour packing of convex discs , 1973 .
[108] S. S. Ryshkov. Density of an (r, R)-system , 1974 .
[109] G. Blind. Überdeckung der Ebene durch inkongruente Kreise , 1974 .
[110] Multiple Subdivisions of the Plane , 1974 .
[111] Die Dichte einer Kugelpackung in einer 4-Dimensionalen Schicht , 1974 .
[112] V M Sidel'nikov. NEW BOUNDS FOR DENSEST PACKING OF SPHERES IN n-DIMENSIONAL EUCLIDEAN SPACE , 1974 .
[113] Endlichen-Nachbarnpackungen in der Ebene und auf der Kugel , 1974 .
[114] David W. Boyd,et al. A new class of infinite sphere packings , 1974 .
[115] On classes of convex sets that permit plane coverings , 1974 .
[116] G. Tóth,et al. Mehrfache gitterförmige Kreis- und Kugelanordnungen , 1975 .
[117] An estimate of the radius of a cylinder imbeddable in every lattice packing of n-dimensional unit spheres , 1975 .
[118] Thomas L. Saaty,et al. Optimization and the Geometry of Numbers: Packing and Covering , 1975 .
[119] Unterdeckung der Ebene durch inkongruente Kreise , 1975 .
[120] V. Chvátal. On a conjecture of Fejes Tóth , 1975 .
[121] Reguläre hyperbolische Mosaike und Newtonsche Zahlen II , 1975 .
[122] V. I. Levenshtein. Maximal packing density of n-dimensional Euclidean space with equal balls , 1975 .
[123] A. Florian. Integrale auf konvexen Mosaiken , 1975 .
[124] R. Askey. Orthogonal Polynomials and Special Functions , 1975 .
[125] M. Smith. Packing Translates of a Compact Set in Euclidean Space , 1975 .
[126] H. Groemer. On a covering property of convex sets , 1976 .
[127] M. Cohn. Multiple Lattice Covering of Space , 1976 .
[128] Some Covering and Packing Problems , 1976 .
[129] Mehrfache Kreisanordnungen in der euklidischen Ebene , 1976 .
[130] L. Fejes Tóth,et al. Multiple packing and covering of the plane with circles , 1976 .
[131] Robert J. McEliece,et al. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.
[132] Thinnest Packing of Cubes with a Given Number of Neighbours , 1977, Canadian Mathematical Bulletin.
[133] L. Tóth. Illumination of convex discs , 1977 .
[134] J. Linhart. Über die Kantenlängensumme von Dreieckspolyedern , 1977 .
[135] W. Blundon. A Three-Fold Non-Lattice Covering , 1977, Canadian Mathematical Bulletin.
[136] J. Wilker. Sizing up a solid packing , 1977 .
[137] On the permeability problem , 1977 .
[138] J. Seidel,et al. Spherical codes and designs , 1977 .
[139] G. Tóth. On the intersection of a convex disc and a polygon , 1977 .
[140] Zugänglichkeit von Kugelpackungen im ℝn , 1978 .
[141] L. Tóth. Remarks on the closest packing of convex discs , 1978 .
[142] On coverings of Euclidean space by convex sets. , 1978 .
[143] On multiple space subdivisions by zonotopes , 1978 .
[144] A nine-fold packing , 1978 .
[145] K. Böröczky. Packing of spheres in spaces of constant curvature , 1978 .
[146] N. Sloane. Codes over GF(4) and complex lattices , 1978 .
[147] J. Molnár. Packing of congruent spheres in a strip , 1978 .
[148] Kantenkrümmung und Umkugelradius konvexer Polyeder , 1979 .
[149] Ausfüllungen der hyperbolischen Ebene durch kongruente Hyperzykelbereiche , 1979 .
[150] Space coverings by translates of convex sets , 1979 .
[151] Raphael M. Robinson,et al. Multiple tilings ofn-dimensional space by unit cubes , 1979 .
[152] J. Wills,et al. Stetige und diskrete Funktionale konvexer Körper , 1979 .
[153] N. J. A. Sloane,et al. New Bounds on the Number of Unit Spheres That Can Touch a Unit Sphere in n Dimensions , 1979, J. Comb. Theory, Ser. A.
[154] G. Tóth. Multiple packing and covering of spheres , 1979 .
[155] On the ϱ-systems of circles , 1979 .
[156] S. P. Lloyd,et al. Hamming Association Schemes and Codes on Spheres , 1980 .
[157] L. J. Yang. Multiple lattice packings and coverings of spheres , 1980 .
[158] M. Best,et al. Binary codes with a minimum distance of four (Corresp.) , 1980, IEEE Trans. Inf. Theory.
[159] Paul Erdös,et al. On a problem of L. Fejes Tóth , 1980, Discret. Math..
[160] On Finite Classes of Convex Sets that Permit Space Coverings , 1980 .
[161] G. Tóth. Ten-neighbour packing of equal balls , 1981 .
[162] L. Lovász,et al. Remarks on a theorem of Redei , 1981 .
[163] J. Linhart. Die Beleuchtung Von Kugeln , 1981 .
[164] Uniqueness of Certain Spherical Codes , 1981 .
[165] N. J. A. Sloane,et al. Tables of sphere packings and spherical codes , 1981, IEEE Trans. Inf. Theory.
[166] ρ-zugängliche Unterdeckungen der Sphäre durch kongruente Kreise , 1981 .
[167] On coverings of plane convex sets by translates of strips , 1981 .
[168] H. Groemer. On coverings of convex sets by translates of slabs , 1981 .
[169] N. J. A. Sloane,et al. Voronoi regions of lattices, second moments of polytopes, and quantization , 1982, IEEE Trans. Inf. Theory.
[170] N. J. A. Sloane,et al. On a problem of Ryskov concerning lattice coverings , 1982 .
[171] W. Kuperberg. Packing convex bodies in the plane with density greater than 3/4 , 1982 .
[172] L. Tóth,et al. Packing and covering with convex discs , 1982 .
[173] Peter Gritzmann,et al. Slices of L. Fejes Tóth's sausage conjecture , 1982 .
[174] H. Groemer. Covering and packing properties of bounded sequences of convex sets , 1982 .
[175] On coverings of spheres by convex sets , 1983 .
[176] L. Fejes Tóth,et al. On the densest packing of convex discs , 1983 .
[177] H. Groemer. On Space Coverings by Unbounded Convex Sets , 1983, J. Comb. Theory, Ser. A.
[178] N. Sloane,et al. New Lattice Packings of Spheres , 1983, Canadian Journal of Mathematics.
[179] J. Pach,et al. Discrete Convex Functions and Proof of the Six Circle Conjecture of Fejes Tóth , 1984, Canadian Journal of Mathematics.