New Results in the Theory of Packing and Covering

Let J be a system of sets. If all members of J are contained in a given set C and each point of C belongs to at most one member of J then J is said to be a packing into C. If, on the other hand, each point of C belongs to at least one member of J then we say that J is a covering of C. Packings and coverings have been considered in various spaces and on various combinatorial structures. Here we are interested in problems concerning packings and coverings consisting of convex bodies in spaces of constant curvature, i.e. in Euclidean, spherical and hyperbolic space. Instead of saying that J is a packing into the whole space or J is a covering of the whole space we shall simply use the terms J is a packing and J is a covering.

[1]  Ludwig August Seeber Recension der "Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber". , 1840 .

[2]  A. Korkine,et al.  Sur les formes quadratiques positives quaternaires , 1872 .

[3]  A. Korkine,et al.  Sur les formes quadratiques , 1873 .

[4]  G. Zolotareff,et al.  Sur les formes quadratiques positives , 1877 .

[5]  H. F. Blichfeldt The minimum value of quadratic forms, and the closest packing of spheres , 1929 .

[6]  P. Tammes On the origin of number and arrangement of the places of exit on the surface of pollen-grains , 1930 .

[7]  H. F. Blichfeldt The minimum values of positive quadratic forms in six, seven and eight variables , 1935 .

[8]  R. Kershner The Number of Circles Covering a Set , 1939 .

[9]  Edmund Hlawka Zur Geometrie der Zahlen , 1943 .

[10]  C. H. Dowker On minimum circumscribed polygons , 1944 .

[11]  Robert A. Rankin,et al.  On the Closest Packing of Spheres in n Dimensions , 1947 .

[12]  C. A. Rogers The closest packing of convex two-dimensional domains , 1951 .

[13]  H. P. F. Swinnerton-Dyer,et al.  Extremal lattices of convex bodies , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  L. Few The Double Packing of Spheres , 1953 .

[15]  H. Coxeter Arrangements of equal spheres in non-Euclidean spaces , 1954 .

[16]  R. Bambah,et al.  On lattice coverings by spheres , 1954 .

[17]  R. Rankin The Closest Packing of Spherical Caps in n Dimensions , 1955, Proceedings of the Glasgow Mathematical Association.

[18]  W. Blundon Multiple covering of the plane by circles , 1957 .

[19]  H. Hadwiger,et al.  Über Treffanzahlen bei translationsgleichen Eikörpern , 1957 .

[20]  G. C. Shephard,et al.  The difference body of a convex body , 1957 .

[21]  C. A. Rogers A note on coverings , 1957 .

[22]  C. A. Rogers The Packing of Equal Spheres , 1958 .

[23]  C. A. Rogers Lattice Coverings of Space: The Minkowski–Hlawka Theorem , 1958 .

[24]  A. Heppes Mehrfache gitterförmige Kreislagerungen in der Ebene , 1959 .

[25]  H. Coxeter,et al.  Covering space with equal spheres , 1959 .

[26]  C. A. Rogers Lattice coverings of space , 1959 .

[27]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .

[28]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[29]  Oscar Wesler An infinite packing theorem for spheres , 1960 .

[30]  Helmut Groemer,et al.  Über die Einlagerung von Kreisen in einen konvexen Bereich , 1960 .

[31]  W. M. Schmidt Zur Lagerung kongruenter Körper im Raum , 1961 .

[32]  P. Erdös,et al.  Covering space with convex bodies , 1962 .

[33]  E. Bender Area-Perimeter Relations for Two-Dimensional Lattices , 1962 .

[34]  Helmut Groemer,et al.  Existenzsätze für Lagerungen im Euklidishen Raum , 1963 .

[35]  C. A. Rogers Covering a sphere with spheres , 1963 .

[36]  W. Blundon Multiple Packing of Circles in the Plane , 1963 .

[37]  W. Schmidt On the Minkowski-Hlawka theorem , 1963 .

[38]  Note on a paper of a. heppes , 1963 .

[39]  N. M. Blachman,et al.  Multiple packing of spherical caps , 1963 .

[40]  L. Few Multiple Packing of Spheres , 1964 .

[41]  J. Leech Some Sphere Packings in Higher Space , 1964, Canadian Journal of Mathematics.

[42]  Some Lower Bounds for Density of Multiple Packing , 1964, Canadian Mathematical Bulletin.

[43]  P. Erdos,et al.  THE AMOUNT OF OVERLAPPING IN PARTIAL COVERINGS OF SPACE BY EQUAL SPHERES , 1964 .

[44]  C. A. Rogers,et al.  On coverings with convex domains , 1964 .

[45]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[46]  E. Gilbert Randomly Packed and Solidly Packed Spheres , 1964, Canadian Journal of Mathematics.

[47]  P. Davis Simple quadratures in the complex plane. , 1965 .

[48]  A. Wyner Capabilities of bounded discrepancy decoding , 1965 .

[49]  J. Schaer The Densest Packing of 9 Circles in a Square , 1965, Canadian Mathematical Bulletin.

[50]  A. Meir,et al.  On a Geometric Extremum Problem , 1965, Canadian Mathematical Bulletin.

[51]  D. Slepian,et al.  On the optimality of the regular simplex code , 1966 .

[52]  D. Larman,et al.  On the exponent of convergence of a packing of spheres , 1966 .

[53]  Z. A. Melzak Infinite Packings of Disks , 1966, Canadian Journal of Mathematics.

[54]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[55]  D. Larman A note on the Besicovitch dimension of the closest packing of spheres in Rn , 1966, Mathematical Proceedings of the Cambridge Philosophical Society.

[56]  Helmut Groemer Zusammenhängende Lagerungen konvexer Körper , 1966 .

[57]  K. Hirst The Apollonian Packing of Circles , 1967 .

[58]  John Leech,et al.  Five Dimensional Non-Lattice Sphere Packings , 1967, Canadian Mathematical Bulletin.

[59]  Double covering with spheres , 1967 .

[60]  A variant of the problem of the thirteen spheres , 1967 .

[61]  S. Kravitz Packing Cylinders into Cylindrical Containers , 1967 .

[62]  D. Larman On the Besicovitch Dimension of the Residual Set of Arbitrarily Packed Disks in the Plane , 1967 .

[63]  J. Wilker Open Disk Packings of a Disk , 1967, Canadian Mathematical Bulletin.

[64]  L. Few Double packing of spheres: a new upper bound , 1968 .

[65]  Ein Satz über konvexe Mengen und Gitterpunkte , 1968 .

[66]  D. Larman On Packings of Unequal Spheres in Rn , 1968, Canadian Journal of Mathematics.

[67]  J. Leech Six and Seven Dimensional Non-Lattice Sphere Packings , 1969, Canadian Mathematical Bulletin.

[68]  Z. A. Melzak On the Solid-Packing Constant for Circles , 1969 .

[69]  U. Pirl Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten , 1969 .

[70]  L. Tóth Scheibenpackungen konstanter Nachbarnzahl , 1969 .

[71]  D. Boyd Osculatory Packings by Spheres , 1970, Canadian Mathematical Bulletin.

[72]  N. Sloane,et al.  New sphere packings in dimensions 9–15 , 1970 .

[73]  Michael Goldberg The Packing of Equal Circles in a Square , 1970 .

[74]  D. Boyd Lower Bounds for the Disk Packing Constant , 1970 .

[75]  B. Delone,et al.  A NEW CONSTRUCTION IN THE THEORY OF LATTICE COVERINGS OF AN n-DIMENSIONAL SPACE BY EQUAL SPHERES , 1970 .

[76]  Volumen und Oberfläche eines Eikörpers, der keine Gitterpunkte überdeckt , 1970 .

[77]  Douglas J. Hoylman THE DENSEST LATTICE PACKING OF TETRAHEDRA , 1970 .

[78]  M. Goldberg Packing of 14, 16, 17 and 20 Circles in a Circle , 1971 .

[79]  N. Sloane,et al.  Sphere Packings and Error-Correcting Codes , 1971, Canadian Journal of Mathematics.

[80]  D. Boyd On the Exponent of an Osculatory Packing , 1971, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[81]  A. Beck,et al.  Packing convex sets into a similar set , 1972 .

[82]  K. Böröczky Über die Newtonsche Zahl regulärer Vielecke , 1971 .

[83]  David W. Boyd,et al.  The disk-packing constant , 1971 .

[84]  G. D. Chakerian,et al.  Geometric Extremum Problems , 1971 .

[85]  Packing of convex sets in the plane with a great number of neighbours , 1972 .

[86]  Jörg M. Wills,et al.  Eine Ungleichung zwischen Volumen, Oberfläche und Gitterpunktanzahl konvexer Körper imn-dimensionalen euklidischen Raum , 1972 .

[87]  N. J. A. Sloane,et al.  Sphere packings constructed from BCH and Justesen codes , 1972 .

[88]  G. Butler,et al.  Simultaneous Packing and Covering in Euclidean Space , 1972 .

[89]  V. Dumir,et al.  Lattice double packings in the plane , 1972 .

[90]  Béla Bollobás,et al.  The optimal structure of market areas , 1972 .

[91]  G. Tóth Covering the plane by convex discs , 1972 .

[92]  D. Boyd Disk Packings which have Non-Extreme Exponents , 1972, Canadian mathematical bulletin.

[93]  J. Wilker THE INTERVAL OF DISK PACKING EXPONENTS1 , 2010 .

[94]  D. Boyd Improved bounds for the disk-packing constant , 1973 .

[95]  G. Tóth,et al.  Sum of moments of convex polygons , 1973 .

[96]  J. Linhart Die Newtonsche Zahl von regelmässigen Fünfecken , 1973 .

[97]  D. Boyd An Algorithm for Generating the Sphere Coordinates in a Three-Dimensional Osculatory Packing , 1973 .

[98]  L. Tóth,et al.  On totally separable domains , 1973 .

[99]  V. Dumir,et al.  A conjecture of Fejes Tóth on saturated systems of circles , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[100]  G. Purdy The lattice triple packing of spheres in Euclidean space , 1973 .

[101]  D. Boyd The residual set dimension of the Apollonian packing , 1973 .

[102]  Über Einige Vermutungen Von L. Fejes Tóth , 1973 .

[103]  V. Dumir,et al.  Saturated systems of symmetric convex domains; results of Eggleston, Bambah and Woods , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[104]  David W. Boyd,et al.  The Osculatory Packing of a Three Dimensional Sphere , 1973, Canadian Journal of Mathematics.

[105]  The Optimal Arrangement of Producers , 1973 .

[106]  L. Fejes Tóth,et al.  On the density of a connected lattice of convex bodies , 1973 .

[107]  L. Fejes Tóth,et al.  Five-neighbour packing of convex discs , 1973 .

[108]  S. S. Ryshkov Density of an (r, R)-system , 1974 .

[109]  G. Blind Überdeckung der Ebene durch inkongruente Kreise , 1974 .

[110]  Multiple Subdivisions of the Plane , 1974 .

[111]  Die Dichte einer Kugelpackung in einer 4-Dimensionalen Schicht , 1974 .

[112]  V M Sidel'nikov NEW BOUNDS FOR DENSEST PACKING OF SPHERES IN n-DIMENSIONAL EUCLIDEAN SPACE , 1974 .

[113]  Endlichen-Nachbarnpackungen in der Ebene und auf der Kugel , 1974 .

[114]  David W. Boyd,et al.  A new class of infinite sphere packings , 1974 .

[115]  On classes of convex sets that permit plane coverings , 1974 .

[116]  G. Tóth,et al.  Mehrfache gitterförmige Kreis- und Kugelanordnungen , 1975 .

[117]  An estimate of the radius of a cylinder imbeddable in every lattice packing of n-dimensional unit spheres , 1975 .

[118]  Thomas L. Saaty,et al.  Optimization and the Geometry of Numbers: Packing and Covering , 1975 .

[119]  Unterdeckung der Ebene durch inkongruente Kreise , 1975 .

[120]  V. Chvátal On a conjecture of Fejes Tóth , 1975 .

[121]  Reguläre hyperbolische Mosaike und Newtonsche Zahlen II , 1975 .

[122]  V. I. Levenshtein Maximal packing density of n-dimensional Euclidean space with equal balls , 1975 .

[123]  A. Florian Integrale auf konvexen Mosaiken , 1975 .

[124]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[125]  M. Smith Packing Translates of a Compact Set in Euclidean Space , 1975 .

[126]  H. Groemer On a covering property of convex sets , 1976 .

[127]  M. Cohn Multiple Lattice Covering of Space , 1976 .

[128]  Some Covering and Packing Problems , 1976 .

[129]  Mehrfache Kreisanordnungen in der euklidischen Ebene , 1976 .

[130]  L. Fejes Tóth,et al.  Multiple packing and covering of the plane with circles , 1976 .

[131]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[132]  Thinnest Packing of Cubes with a Given Number of Neighbours , 1977, Canadian Mathematical Bulletin.

[133]  L. Tóth Illumination of convex discs , 1977 .

[134]  J. Linhart Über die Kantenlängensumme von Dreieckspolyedern , 1977 .

[135]  W. Blundon A Three-Fold Non-Lattice Covering , 1977, Canadian Mathematical Bulletin.

[136]  J. Wilker Sizing up a solid packing , 1977 .

[137]  On the permeability problem , 1977 .

[138]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[139]  G. Tóth On the intersection of a convex disc and a polygon , 1977 .

[140]  Zugänglichkeit von Kugelpackungen im ℝn , 1978 .

[141]  L. Tóth Remarks on the closest packing of convex discs , 1978 .

[142]  On coverings of Euclidean space by convex sets. , 1978 .

[143]  On multiple space subdivisions by zonotopes , 1978 .

[144]  A nine-fold packing , 1978 .

[145]  K. Böröczky Packing of spheres in spaces of constant curvature , 1978 .

[146]  N. Sloane Codes over GF(4) and complex lattices , 1978 .

[147]  J. Molnár Packing of congruent spheres in a strip , 1978 .

[148]  Kantenkrümmung und Umkugelradius konvexer Polyeder , 1979 .

[149]  Ausfüllungen der hyperbolischen Ebene durch kongruente Hyperzykelbereiche , 1979 .

[150]  Space coverings by translates of convex sets , 1979 .

[151]  Raphael M. Robinson,et al.  Multiple tilings ofn-dimensional space by unit cubes , 1979 .

[152]  J. Wills,et al.  Stetige und diskrete Funktionale konvexer Körper , 1979 .

[153]  N. J. A. Sloane,et al.  New Bounds on the Number of Unit Spheres That Can Touch a Unit Sphere in n Dimensions , 1979, J. Comb. Theory, Ser. A.

[154]  G. Tóth Multiple packing and covering of spheres , 1979 .

[155]  On the ϱ-systems of circles , 1979 .

[156]  S. P. Lloyd,et al.  Hamming Association Schemes and Codes on Spheres , 1980 .

[157]  L. J. Yang Multiple lattice packings and coverings of spheres , 1980 .

[158]  M. Best,et al.  Binary codes with a minimum distance of four (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[159]  Paul Erdös,et al.  On a problem of L. Fejes Tóth , 1980, Discret. Math..

[160]  On Finite Classes of Convex Sets that Permit Space Coverings , 1980 .

[161]  G. Tóth Ten-neighbour packing of equal balls , 1981 .

[162]  L. Lovász,et al.  Remarks on a theorem of Redei , 1981 .

[163]  J. Linhart Die Beleuchtung Von Kugeln , 1981 .

[164]  Uniqueness of Certain Spherical Codes , 1981 .

[165]  N. J. A. Sloane,et al.  Tables of sphere packings and spherical codes , 1981, IEEE Trans. Inf. Theory.

[166]  ρ-zugängliche Unterdeckungen der Sphäre durch kongruente Kreise , 1981 .

[167]  On coverings of plane convex sets by translates of strips , 1981 .

[168]  H. Groemer On coverings of convex sets by translates of slabs , 1981 .

[169]  N. J. A. Sloane,et al.  Voronoi regions of lattices, second moments of polytopes, and quantization , 1982, IEEE Trans. Inf. Theory.

[170]  N. J. A. Sloane,et al.  On a problem of Ryskov concerning lattice coverings , 1982 .

[171]  W. Kuperberg Packing convex bodies in the plane with density greater than 3/4 , 1982 .

[172]  L. Tóth,et al.  Packing and covering with convex discs , 1982 .

[173]  Peter Gritzmann,et al.  Slices of L. Fejes Tóth's sausage conjecture , 1982 .

[174]  H. Groemer Covering and packing properties of bounded sequences of convex sets , 1982 .

[175]  On coverings of spheres by convex sets , 1983 .

[176]  L. Fejes Tóth,et al.  On the densest packing of convex discs , 1983 .

[177]  H. Groemer On Space Coverings by Unbounded Convex Sets , 1983, J. Comb. Theory, Ser. A.

[178]  N. Sloane,et al.  New Lattice Packings of Spheres , 1983, Canadian Journal of Mathematics.

[179]  J. Pach,et al.  Discrete Convex Functions and Proof of the Six Circle Conjecture of Fejes Tóth , 1984, Canadian Journal of Mathematics.