Complexity issues in basic logic

We survey complexity results concerning a family of propositional many-valued logics. In particular, we shall address satisfiability and tautologousness problems for Hájek's Basic Logic BL and for several of its schematic extensions. We shall review complexity bounds obtained from functional representation results, as well as techniques for dealing with non-trivial ordinal sums of continuous t-norms.

[1]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[2]  Petr Cintula,et al.  Semi-normal forms and functional representation of product fuzzy logic , 2004, Fuzzy Sets Syst..

[3]  P. Aglianò,et al.  Varieties of BL- algebras I: General properties. , 2003 .

[4]  Stefano Aguzzoli,et al.  Finiteness in Infinite-Valued Łukasiewicz Logic , 2000, J. Log. Lang. Inf..

[5]  Robert McNaughton,et al.  A Theorem About Infinite-Valued Sentential Logic , 1951, J. Symb. Log..

[6]  Lluis Godo,et al.  Basic Fuzzy Logic is the logic of continuous t-norms and their residua , 2000, Soft Comput..

[7]  Giangiacomo Gerla,et al.  Lectures on Soft Computing and Fuzzy Logic , 2001 .

[8]  Petr Hájek,et al.  Basic fuzzy logic and BL-algebras II , 1998, Soft Comput..

[9]  Reiner Hähnle,et al.  Many-valued logic and mixed integer programming , 1994, Annals of Mathematics and Artificial Intelligence.

[10]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[11]  Petr Hájek,et al.  Basic fuzzy logic and BL-algebras , 1998, Soft Comput..

[12]  Helmut Veith,et al.  Complexity of t-tautologies , 2001, Ann. Pure Appl. Log..

[13]  Jan Krajícek,et al.  Embedding Logics into Product Logic , 1998, Stud Logica.

[14]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[15]  J. Rosser,et al.  Fragments of many-valued statement calculi , 1958 .

[16]  Brunella Gerla,et al.  On Countermodels in Basic Logic , 2003 .

[17]  Daniele Mundici,et al.  Satisfiability in Many-Valued Sentential Logic is NP-Complete , 1987, Theor. Comput. Sci..

[18]  Brunella Gerla,et al.  Finite-valued reductions of infinite-valued logics , 2002, Arch. Math. Log..

[19]  Zuzana Haniková,et al.  Mathematical and Metamathematical Properties of Fuzzy Logic , 2003 .

[20]  Franco Montagna Free BLΔ Algebras , 2001 .

[21]  Petr Hájek,et al.  Residuated fuzzy logics with an involutive negation , 2000, Arch. Math. Log..

[22]  G. Ewald Combinatorial Convexity and Algebraic Geometry , 1996 .

[23]  Zuzana Haniková Standard algebras for fuzzy propositional calculi , 2001, Fuzzy Sets Syst..

[24]  Brunella Gerla A note on functions associated with Gödel formulas , 2000, Soft Comput..

[25]  Daniele Mundici,et al.  A constructive proof of McNaughton's theorem in infinite-valued logic , 1994, Journal of Symbolic Logic (JSL).

[26]  Reiner Hähnle Proof theory of many-valued logic—linear optimization—logic design: connections and interactions , 1997, Soft Comput..

[27]  Franco Montagna,et al.  Equational Characterization of the Subvarieties of BL Generated by t-norm Algebras , 2004, Stud Logica.

[28]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[29]  Reiner Hähnle,et al.  Automated deduction in multiple-valued logics , 1993, International series of monographs on computer science.