Fabrication of high sensitivity and fast response IR photodetector based on VO2 nanocrystalline thin films prepared on the silicon substrate

[1]  Abbas M. Selman,et al.  Fabrication of GaN Nanocrystalline Thin Films Schottky Metal-Semiconductor-Metal Ultraviolet Photodetectors , 2022, Optik.

[2]  Abbas M. Selman,et al.  Self-biased high sensitivity near-infrared photodetector based on nanocrystalline indium nitride film , 2022, Materials Letters.

[3]  M. Vasilevskiy,et al.  Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements , 2021, Solid State Communications.

[4]  Weibiao Ren,et al.  Flexible VO2/Mica thin films with excellent phase transition properties fabricated by RF magnetron sputtering , 2021 .

[5]  M. A. Mahdi,et al.  Photocatalytic activity and photoelectrochemical properties of Ag/ZnO core/shell nanorods under low-intensity white light irradiation , 2021, Nanotechnology.

[6]  Linfeng Lu,et al.  Phase‐Transition‐Induced VO2 Thin Film IR Photodetector and Threshold Switching Selector for Optical Neural Network Applications , 2021, Advanced Electronic Materials.

[7]  T. Ganesh,et al.  Thermal studies on chemical bath deposited thermochromic VO2 thin film for energy efficient glass windows , 2020 .

[8]  Aseel Hmood,et al.  Low cost flexible ultraviolet photodetector based on ZnO nanorods prepared using chemical bath deposition , 2020 .

[9]  A. Umarji,et al.  IR photoresponsive VO2thin films and electrically assisted transition prepared by single-step chemical vapor deposition , 2020 .

[10]  A. Umarji,et al.  Defect engineering of VO2 thin films synthesized by Chemical Vapor Deposition , 2020 .

[11]  Xiaohua Wang,et al.  Electrical and infrared responses of n-VO2/p-GaAs heterojunctions based on VO2 phase transition properties , 2020, Journal of Physics D: Applied Physics.

[12]  Influence of pH on the photocatalytic activity of ZnO nanorods , 2020, Materials International.

[13]  Bong-Joong Kim,et al.  Ultrafast infrared photoresponse from heavily hydrogen-doped VO2 single crystalline nanoparticles. , 2020, Nano letters.

[14]  A. Umarji,et al.  Highly photoresponsive VO2(M1) thin films synthesized by DC reactive sputtering , 2020, Journal of Materials Science: Materials in Electronics.

[15]  A. Umarji,et al.  Low-cost VO2(M1) thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture for IR photodetection , 2019, RSC advances.

[16]  S. Ghosh,et al.  Phase-pure VO2 nanoporous structure for binder-free supercapacitor performances , 2019, Scientific Reports.

[17]  L. Fan,et al.  Well-Dispersed Monoclinic VO2 Nanoclusters with Uniform Size for Sensitive near-Infrared Detection , 2018, ACS Applied Nano Materials.

[18]  D. Jung,et al.  Fabrication of pure monoclinic VO 2 nanoporous nanorods via a mild pyrolysis process , 2018 .

[19]  M. A. Mahdi,et al.  Fabrication of a high sensitivity and fast response self-powered photosensor based on a core-shell silicon nanowire homojunction , 2018 .

[20]  Y. Jung,et al.  Synthesis of colloidal VO2 nanoparticles for thermochromic applications , 2018 .

[21]  M. A. Mahdi,et al.  Fabrication of Cu 2 O nanocrystalline thin films photosensor prepared by RF sputtering technique , 2017 .

[22]  Yimin A. Wu,et al.  Revealing mechanism responsible for structural reversibility of single-crystal VO2 nanorods upon lithiation/delithiation , 2017 .

[23]  M. Terrones,et al.  Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications , 2017 .

[24]  Frederic Cortés Juan,et al.  Ultra-compact electro-absorption VO2–Si modulator with TM to TE conversion , 2017 .

[25]  Abbas M. Selman,et al.  Calcination induced phase transformation of TiO2 nanostructures and fabricated a Schottky diode as humidity sensor based on rutile phase , 2016 .

[26]  P. Pal,et al.  Ultrasensitive self-powered large area planar GaN UV-photodetector using reduced graphene oxide electrodes , 2016, 1611.03597.

[27]  Z. Hassan,et al.  Fabrication and characterization of metal–semiconductor–metal ultraviolet photodetector based on rutile TiO2 nanorod , 2016 .

[28]  Zainuriah Hassan,et al.  Effects of variations in precursor concentration on the growth of rutile TiO2 nanorods on Si substrate with fabricated fast-response metal–semiconductor–metal UV detector , 2015 .

[29]  Zainuriah Hassan,et al.  Highly sensitive fast-response UV photodiode fabricated from rutile TiO2 nanorod array on silicon substrate , 2015 .

[30]  Z. Hassan,et al.  Structural and photoluminescence studies of rutile TiO2 nanorods prepared by chemical bath deposition method on Si substrates at different pH values , 2014 .

[31]  S. Magdassi,et al.  VO₂/Si-Al gel nanocomposite thermochromic smart foils: largely enhanced luminous transmittance and solar modulation. , 2014, Journal of colloid and interface science.

[32]  Z. Hassan,et al.  A high-sensitivity, fast-response, rapid-recovery p–n heterojunction photodiode based on rutile TiO2 nanorod array on p-Si(1 1 1) , 2014 .

[33]  Jinlong Yang,et al.  Ultrahigh Infrared Photoresponse from Core–Shell Single‐Domain‐VO2/V2O5 Heterostructure in Nanobeam , 2014 .

[34]  Wang Ning,et al.  Formation of VO2 zero-dimensional/nanoporous layers with large supercooling effects and enhanced thermochromic properties , 2013 .

[35]  M. A. Mahdi,et al.  Growth and characterization of CdS single-crystalline micro-rod photodetector , 2013 .

[36]  M. A. Mahdi,et al.  Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO2/Si substrate via a microwave-assisted chemical solution method , 2013 .

[37]  M. A. Mahdi,et al.  Preparation of chemically deposited thin films of CdS/PbS solar cell , 2012 .

[38]  M. A. Mahdi,et al.  Room-temperature hydrogen gas sensor with ZnO nanorod arrays grown on a quartz substrate , 2012 .

[39]  M. A. Mahdi,et al.  Structural and optical properties of nanocrystalline CdS thin films prepared using microwave-assisted chemical bath deposition , 2012 .