Power law growth for the resistance in the Fibonacci model

AbstractMany one-dimensional quasiperiodic systems based on the Fibonacci rule, such as the tight-binding HamiltonianHψ(n)=ψ(n+1)+ψ(n−1)+λv(n)ψ(n),nεℤ,ψεl2(ℤ),λεℝ, wherev(n)=[(n+1)α]−[nα],[x] denoting the integer part ofx and α the golden mean $$(\sqrt 5 --1)/2$$ , give rise to the same recursion relation for the transfer matrices. It is proved that the wave functions and the norm of transfer matrices are polynomially bounded (critical regime) if and only if the energy is in the spectrum of the Hamiltonian. This solves a conjecture of Kohmoto and Sutherland on the power-law growth of the resistance in a one-dimensional quasicrystal.

[1]  András Sütő,et al.  The spectrum of a quasiperiodic Schrödinger operator , 1987 .

[2]  J. Bellissard,et al.  Continuity properties of the electronic spectrum of 1D quasicrystals , 1991 .

[3]  Banavar,et al.  Quasiperiodic lattice: Electronic properties, phonon properties, and diffusion. , 1986, Physical review. B, Condensed matter.

[4]  M. K. Ali,et al.  Scaling and eigenstates for a class of one-dimensional quasiperiodic lattices , 1988 .

[5]  Chao Tang,et al.  Localization Problem in One Dimension: Mapping and Escape , 1983 .

[6]  P J Steinhardt,et al.  The physics of quasicrystals , 1987 .

[7]  C. Sire,et al.  Spectrum of 1D quasicrystals near the periodic chain , 1989 .

[8]  Kohmoto,et al.  Resistance of a one-dimensional quasicrystal: Power-law growth. , 1987, Physical review. B, Condensed matter.

[9]  Tsai,et al.  Interface polariton modes in semiconductor quasiperiodic superlattices. , 1987, Physical review. B, Condensed matter.

[10]  M. Casdagli Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation , 1986 .

[11]  Rodríguez,et al.  Acoustic and electronic properties of one-dimensional quasicrystals. , 1986, Physical review. B, Condensed matter.

[12]  Holzer Nonlinear dynamics of localization in a class of one-dimensional quasicrystals. , 1988, Physical review. B, Condensed matter.

[13]  András Sütő,et al.  Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian , 1989 .

[14]  F. Wijnands Energy spectra for one-dimensional quasiperiodic potentials: bandwidth, scaling, mapping and relation with local isomorphism , 1989 .

[15]  J. Kollár,et al.  The Kronig-Penney model on a fibonacci lattice , 1986 .

[16]  Ali,et al.  Dynamical maps, Cantor spectra, and localization for Fibonacci and related quasiperiodic lattices. , 1988, Physical review letters.

[17]  Kohmoto,et al.  Localization of optics: Quasiperiodic media. , 1987, Physical review letters.

[18]  David A. Rand,et al.  One-dimensional schrodinger equation with an almost periodic potential , 1983 .

[19]  Aoyama,et al.  Hyperinflation in periodic and quasiperiodic chains. , 1988, Physical review letters.

[20]  Seunghwan Kim,et al.  Renormalization of Quasiperiodic Mappings , 1985 .

[21]  J. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[22]  Tang,et al.  Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model. , 1987, Physical review. B, Condensed matter.

[23]  L. Levitov Renormalization group for a quasiperiodic Schrödinger operator , 1989 .

[24]  Holzer Three classes of one-dimensional, two-tile Penrose tilings and the Fibonacci Kronig-Penney model as a generic case. , 1988, Physical review. B, Condensed matter.

[25]  Jean Bellissard,et al.  Spectral properties of one dimensional quasi-crystals , 1989 .

[26]  On the Energy Transport in Linear Chains , 1974 .

[27]  R. Pandit,et al.  Renormalization-group analysis of the discrete quasiperiodic Schrödinger equation , 1984 .

[28]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[29]  M. Kohmoto Metal-Insulator Transition and Scaling for Incommensurate Systems , 1983 .

[30]  Macdonald,et al.  Continuum-model acoustic and electronic properties for a Fibonacci superlattice. , 1987, Physical review. B, Condensed matter.