Multi-Label Prediction via Compressed Sensing

We consider multi-label prediction problems with large output spaces under the assumption of output sparsity - that the target (label) vectors have small support. We develop a general theory for a variant of the popular error correcting output code scheme, using ideas from compressed sensing for exploiting this sparsity. The method can be regarded as a simple reduction from multi-label regression problems to binary regression problems. We show that the number of subproblems need only be logarithmic in the total number of possible labels, making this approach radically more efficient than others. We also state and prove robustness guarantees for this method in the form of regret transform bounds (in general), and also provide a more detailed analysis for the linear prediction setting.

[1]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[2]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[3]  S. Dasgupta,et al.  Learning probability distributions , 2000 .

[4]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[5]  M. Ledoux The concentration of measure phenomenon , 2001 .

[6]  Amanda Clare,et al.  Knowledge Discovery in Multi-label Phenotype Data , 2001, PKDD.

[7]  Ben Taskar,et al.  Max-Margin Markov Networks , 2003, NIPS.

[8]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[9]  Claudio Gentile,et al.  Incremental Algorithms for Hierarchical Classification , 2004, J. Mach. Learn. Res..

[10]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[11]  Ryan M. Rifkin,et al.  In Defense of One-Vs-All Classification , 2004, J. Mach. Learn. Res..

[12]  Thomas Hofmann,et al.  Support vector machine learning for interdependent and structured output spaces , 2004, ICML.

[13]  Laura A. Dabbish,et al.  Labeling images with a computer game , 2004, AAAI Spring Symposium: Knowledge Collection from Volunteer Contributors.

[14]  A. Ng Feature selection, L1 vs. L2 regularization, and rotational invariance , 2004, Twenty-first international conference on Machine learning - ICML '04.

[15]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[16]  John Langford,et al.  Sensitive Error Correcting Output Codes , 2005, COLT.

[17]  S. Mendelson,et al.  Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles , 2006, math/0608665.

[18]  Juho Rousu,et al.  Kernel-Based Learning of Hierarchical Multilabel Classification Models , 2006, J. Mach. Learn. Res..

[19]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[20]  M. Rudelson,et al.  Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[21]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[22]  Cordelia Schmid,et al.  Learning Object Representations for Visual Object Class Recognition , 2007, ICCV 2007.

[23]  Tong Zhang,et al.  Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models , 2008, NIPS.

[24]  Grigorios Tsoumakas,et al.  Effective and Efficient Multilabel Classification in Domains with Large Number of Labels , 2008 .

[25]  Ambuj Tewari,et al.  On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds, and Regularization , 2008, NIPS.

[26]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[27]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[28]  Junzhou Huang,et al.  Learning with structured sparsity , 2009, ICML '09.

[29]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.