Bottleneck flows in networks

The bottleneck network flow problem (BNFP) is a generalization of several well-studied bottleneck problems such as the bottleneck transportation problem (BTP), bottleneck assignment problem (BAP), bottleneck path problem (BPP), and so on. In this paper we provide a review of important results on this topic and its various special cases. We observe that the BNFP can be solved as a sequence of $O(\log n)$ maximum flow problems. However, special augmenting path based algorithms for the maximum flow problem can be modified to obtain algorithms for the BNFP with the property that these variations and the corresponding maximum flow algorithms have identical worst case time complexity. On unit capacity network we show that BNFP can be solved in $O(\min \{{m(n\log n)}^{{2/3}}, m^{{3/2}}\sqrt{\log n}\})$. This improves the best available algorithm by a factor of $\sqrt{\log n}$. On unit capacity simple graphs, we show that BNFP can be solved in $O(m \sqrt {n \log n})$ time. As a consequence we have an $O(m \sqrt {n \log n})$ algorithm for the BTP with unit arc capacities.

[1]  Hans Kellerer,et al.  Bottleneck quadratic assignment problem and the bandwidth problem , 1998 .

[2]  Rainer E. Burkard,et al.  Weakly admissible transformations for solving algebraic assignment and transportation problems , 1980 .

[3]  Rainer E. Burkard,et al.  The Solution of Algebraic Assignment and Transportation Problems , 1978 .

[4]  Robert Garfinkel,et al.  The bottleneck transportation problem , 1971 .

[5]  Ulrich Derigs,et al.  On three basic methods for solving bottleneck transportation problems , 1982 .

[6]  Robert Garfinkel,et al.  Mosaicking of Aerial Photographic Maps Via Seams Defined by Bottleneck Shortest Paths , 1998, Oper. Res..

[7]  Horst A. Eiselt,et al.  Solution structures and sensitivity of special assignment problems , 1984, Comput. Oper. Res..

[8]  Robert A. Russell,et al.  An efficient primal approach to bottleneck transportation problems , 1983 .

[9]  Robert E. Tarjan,et al.  Algorithms for Two Bottleneck Optimization Problems , 1988, J. Algorithms.

[10]  K. K. Achary,et al.  On the bottleneck linear programming problem , 1982 .

[11]  Donald Goldfarb,et al.  A primal simplex algorithm that solves the maximum flow problem in at mostnm pivots and O(n2m) time , 1990, Math. Program..

[12]  S. M. Shvartin An algorithm for planning transport in minimum time , 1975 .

[13]  Ulrich Derigs,et al.  An augmenting path method for solving Linear Bottleneck Transportation problems , 2005, Computing.

[14]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[15]  Ronald D. Armstrong,et al.  Solving linear bottleneck assignment problems via strong spanning trees , 1992, Oper. Res. Lett..

[16]  Alan Frieze Bottleneck Linear Programming , 1975 .

[17]  Abraham P. Punnen A linear time algorithm for the maximum capacity path problem , 1991 .

[18]  Ulrich Derigs,et al.  An augmenting path method for solving Linear Bottleneck Assignment problems , 1978, Computing.

[19]  Peter Brucker,et al.  An out-of-kilter method for the algebraic circulation problem , 1985, Discret. Appl. Math..

[20]  Ulrich Pferschy Solution methods and computational investigations for the Linear Bottleneck Assignment Problem , 2007, Computing.

[21]  Katarína Cechlárová Trapezoidal Matrices and the Bottleneck Assignment Problem , 1995, Discret. Appl. Math..

[22]  V. Kaibel,et al.  On the Bottleneck Shortest Path Problem , 2006 .

[23]  Gerhard J. Woeginger,et al.  A linear-time algorithm for the bottleneck transportation problem with a fixed number of sources , 1999, Oper. Res. Lett..

[24]  Ulrich Pferschy The Random Linear Bottleneck Assignment Problem , 1995, IPCO.

[25]  L. Słomiński,et al.  On existence of assignments in zero — One matrices , 1986 .

[26]  Robert S. Garfinkel,et al.  Technical Note - An Improved Algorithm for the Bottleneck Assignment Problem , 1971, Oper. Res..

[27]  Ravi Varadarajan An optimal algorithm for 2 × n bottleneck transportation problems , 1991, Oper. Res. Lett..

[28]  John J. Jarvis,et al.  Time minimizing flows in directed networks , 1982 .

[29]  Matthew J. Katz,et al.  Computing Euclidean bottleneck matchings in higher dimensions , 2000, Inf. Process. Lett..

[30]  Peter L. Hammer Communication on “the bottleneck transportation problem” and “some remarks on the time transportation problem” , 1971 .

[31]  Leonidas Georgiadis Bottleneck multicast trees in linear time , 2003, IEEE Communications Letters.

[32]  O. Gross THE BOTTLENECK ASSIGNMENT PROBLEM , 1959 .

[33]  Robert E. Tarjan,et al.  Network Flow and Testing Graph Connectivity , 1975, SIAM J. Comput..

[34]  Peter L. Hammer,et al.  Time‐minimizing transportation problems , 1969 .

[35]  Andrew V. Goldberg,et al.  Flows in Undirected Unit Capacity Networks , 1999, SIAM J. Discret. Math..

[36]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[37]  Ramkumar Ramaswamy,et al.  Sensitivity analysis for shortest path problems and maximum capacity path problems in undirected graphs , 2005, Math. Program..

[38]  Wlodzimierz Szwarc,et al.  Some remarks on the time transportation problem , 1971 .

[39]  Abraham P. Punnen A fast algorithm for a class of bottleneck problems , 2005, Computing.

[40]  Alon Itai,et al.  Geometry Helps in Bottleneck Matching and Related Problems , 2001, Algorithmica.

[41]  Wei Chen,et al.  On strongly polynomial dual simplex algorithms for the maximum flow problem , 1997, Math. Program..

[42]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[43]  Abraham P. Punnen,et al.  Improved Complexity Bound for the Maximum Cardinality Bottleneck Bipartite Matching Problem , 1994, Discret. Appl. Math..

[44]  G. Gallo,et al.  A multi-level bottleneck assignment approach to the bus drivers' rostering problem , 1984 .

[45]  Michael Eley A bottleneck assignment approach to the multiple container loading problem , 2003 .

[46]  S. V. Listrovoi,et al.  Parallel algorithm to find maximum capacity paths , 1998 .

[47]  V. I. Tsurkov,et al.  Transport and network problems with the minimax criterion , 1995 .