暂无分享,去创建一个
[1] R. O. Gandy,et al. COMPUTABILITY IN ANALYSIS AND PHYSICS (Perspectives in Mathematical Logic) , 1991 .
[2] Akitoshi Kawamura,et al. Computational benefit of smoothness: Parameterized bit-complexity of numerical operators on analytic functions and Gevrey's hierarchy , 2015, J. Complex..
[3] Georg Kreisel,et al. Constructive Logic Versus Algebraization I , 1982 .
[4] Arno Pauly,et al. Point Degree Spectra of Represented Spaces , 2014, Forum of Mathematics, Sigma.
[5] Henri Lombardi,et al. Espaces métriques rationnellement présentés et complexité, le cas de l'espace des fonctions réelles uniformément continues sur un intervalle compact , 2001, Theor. Comput. Sci..
[6] Marian Boykan Pour-El,et al. Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.
[7] Matthias Schröder,et al. Extended admissibility , 2002, Theor. Comput. Sci..
[8] Bruce M. Kapron,et al. A New Characterization of Type-2 Feasibility , 1996, SIAM J. Comput..
[9] Erzsébet Csuhaj-Varjú,et al. Mathematical Foundations of Computer Science 2014 , 2014, Lecture Notes in Computer Science.
[10] Klaus Weihrauch,et al. Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.
[11] Stephen A. Cook,et al. Complexity Theory for Operators in Analysis , 2012, TOCT.
[12] Peter Hertling,et al. Topological properties of real number representations , 2002, Theor. Comput. Sci..
[13] A. Timan. Theory of Approximation of Functions of a Real Variable , 1994 .
[14] Matthias Schröder,et al. Spaces allowing Type‐2 Complexity Theory revisited , 2004, Math. Log. Q..
[15] Ning Zhong,et al. Computability Structure of the Sobolev Spaces and Its Applications , 1999, Theor. Comput. Sci..
[16] Ulrich Kohlenbach,et al. Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals , 1996, Arch. Math. Log..
[17] Akitoshi Kawamura,et al. Towards Computational Complexity Theory on Advanced Function Spaces in Analysis , 2016, CiE.
[18] Jonathan F. Buss,et al. Relativized Alternation and Space-Bounded Computation , 1988, J. Comput. Syst. Sci..
[19] K. Weirauch. Computational complexity on computable metric spaces , 2003 .
[20] Salil P. Vadhan,et al. Computational Complexity , 2005, Encyclopedia of Cryptography and Security.
[21] Klaus Weihrauch,et al. Computable Analysis of the Abstract Cauchy Problem in a Banach Space and Its Applications (I) , 2007, Electron. Notes Theor. Comput. Sci..
[22] J. Shepherdson. Computational Complexity of Real Functions , 1985 .
[23] A. Kolmogorov,et al. Entropy and "-capacity of sets in func-tional spaces , 1961 .
[24] Matthias Schröder,et al. Admissible representations for continuous computations , 2003 .
[25] G. Lorentz. Metric entropy and approximation , 1966 .
[26] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[27] Branimir Lambov,et al. The basic feasible functionals in computable analysis , 2006, J. Complex..
[28] Kurt Mehlhorn,et al. Polynomial and abstract subrecursive classes , 1974, STOC '74.
[29] H. Friedman,et al. The computational complexity of maximization and integration , 1984 .
[30] Bruce M. Kapron,et al. Resource-bounded continuity and sequentiality for type-two functionals , 2002, TOCL.
[31] Florian Steinberg. Computational Complexity Theory for Advanced Function Spaces in Analysis , 2017 .
[32] S. C. Kleene,et al. Introduction to Metamathematics , 1952 .
[33] Akitoshi Kawamura,et al. Small Complexity Classes for Computable Analysis , 2014, MFCS.
[34] M. Sudan,et al. Coding theory: tutorial & survey , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[35] Walid Gomaa,et al. Analytical properties of resource-bounded real functionals , 2014, J. Complex..
[36] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[37] Stevo Todorcevic,et al. Notions of computability at higher types I , 2016 .
[38] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[39] Klaus Weihrauch,et al. Computing Schrödinger propagators on Type-2 Turing machines , 2006, J. Complex..
[40] Arno Pauly,et al. Function Spaces for Second-Order Polynomial Time , 2014, CiE.
[41] Ker-I Ko,et al. Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.
[42] Klaus Weihrauch. Electronic Colloquium on Computational Complexity, Report No. 14 (2002) Computational Complexity on Computable Metric Spaces , 2022 .
[43] R. Cooke. Real and Complex Analysis , 2011 .
[44] Ulrich Kohlenbach,et al. Some computational aspects of metric fixed-point theory , 2005 .
[45] Bruce M. Kapron,et al. On characterizations of the basic feasible functionals, Part I , 2001, Journal of Functional Programming.
[46] Vasco Brattka,et al. Towards computability of elliptic boundary value problems in variational formulation , 2006, J. Complex..