Complexity theory for spaces of integrable functions

This paper investigates second-order representations in the sense of Kawamura and Cook for spaces of integrable functions that regularly show up in analysis. It builds upon prior work about the space of continuous functions on the unit interval: Kawamura and Cook introduced a representation inducing the right complexity classes and proved that it is the weakest second-order representation such that evaluation is polynomial-time computable. The first part of this paper provides a similar representation for the space of integrable functions on a bounded subset of Euclidean space: The weakest representation rendering integration over boxes is polynomial-time computable. In contrast to the representation of continuous functions, however, this representation turns out to be discontinuous with respect to both the norm and the weak topology. The second part modifies the representation to be continuous and generalizes it to Lp-spaces. The arising representations are proven to be computably equivalent to the standard representations of these spaces as metric spaces and to still render integration polynomial-time computable. The family is extended to cover Sobolev spaces on the unit interval, where less basic operations like differentiation and some Sobolev embeddings are shown to be polynomial-time computable. Finally as a further justification quantitative versions of the Arzel\`a-Ascoli and Fr\'echet-Kolmogorov Theorems are presented and used to argue that these representations fulfill a minimality condition. To provide tight bounds for the Fr\'echet-Kolmogorov Theorem, a form of exponential time computability of the norm of Lp is proven.

[1]  R. O. Gandy,et al.  COMPUTABILITY IN ANALYSIS AND PHYSICS (Perspectives in Mathematical Logic) , 1991 .

[2]  Akitoshi Kawamura,et al.  Computational benefit of smoothness: Parameterized bit-complexity of numerical operators on analytic functions and Gevrey's hierarchy , 2015, J. Complex..

[3]  Georg Kreisel,et al.  Constructive Logic Versus Algebraization I , 1982 .

[4]  Arno Pauly,et al.  Point Degree Spectra of Represented Spaces , 2014, Forum of Mathematics, Sigma.

[5]  Henri Lombardi,et al.  Espaces métriques rationnellement présentés et complexité, le cas de l'espace des fonctions réelles uniformément continues sur un intervalle compact , 2001, Theor. Comput. Sci..

[6]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[7]  Matthias Schröder,et al.  Extended admissibility , 2002, Theor. Comput. Sci..

[8]  Bruce M. Kapron,et al.  A New Characterization of Type-2 Feasibility , 1996, SIAM J. Comput..

[9]  Erzsébet Csuhaj-Varjú,et al.  Mathematical Foundations of Computer Science 2014 , 2014, Lecture Notes in Computer Science.

[10]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[11]  Stephen A. Cook,et al.  Complexity Theory for Operators in Analysis , 2012, TOCT.

[12]  Peter Hertling,et al.  Topological properties of real number representations , 2002, Theor. Comput. Sci..

[13]  A. Timan Theory of Approximation of Functions of a Real Variable , 1994 .

[14]  Matthias Schröder,et al.  Spaces allowing Type‐2 Complexity Theory revisited , 2004, Math. Log. Q..

[15]  Ning Zhong,et al.  Computability Structure of the Sobolev Spaces and Its Applications , 1999, Theor. Comput. Sci..

[16]  Ulrich Kohlenbach,et al.  Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals , 1996, Arch. Math. Log..

[17]  Akitoshi Kawamura,et al.  Towards Computational Complexity Theory on Advanced Function Spaces in Analysis , 2016, CiE.

[18]  Jonathan F. Buss,et al.  Relativized Alternation and Space-Bounded Computation , 1988, J. Comput. Syst. Sci..

[19]  K. Weirauch Computational complexity on computable metric spaces , 2003 .

[20]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[21]  Klaus Weihrauch,et al.  Computable Analysis of the Abstract Cauchy Problem in a Banach Space and Its Applications (I) , 2007, Electron. Notes Theor. Comput. Sci..

[22]  J. Shepherdson Computational Complexity of Real Functions , 1985 .

[23]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[24]  Matthias Schröder,et al.  Admissible representations for continuous computations , 2003 .

[25]  G. Lorentz Metric entropy and approximation , 1966 .

[26]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[27]  Branimir Lambov,et al.  The basic feasible functionals in computable analysis , 2006, J. Complex..

[28]  Kurt Mehlhorn,et al.  Polynomial and abstract subrecursive classes , 1974, STOC '74.

[29]  H. Friedman,et al.  The computational complexity of maximization and integration , 1984 .

[30]  Bruce M. Kapron,et al.  Resource-bounded continuity and sequentiality for type-two functionals , 2002, TOCL.

[31]  Florian Steinberg Computational Complexity Theory for Advanced Function Spaces in Analysis , 2017 .

[32]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[33]  Akitoshi Kawamura,et al.  Small Complexity Classes for Computable Analysis , 2014, MFCS.

[34]  M. Sudan,et al.  Coding theory: tutorial & survey , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[35]  Walid Gomaa,et al.  Analytical properties of resource-bounded real functionals , 2014, J. Complex..

[36]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[37]  Stevo Todorcevic,et al.  Notions of computability at higher types I , 2016 .

[38]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[39]  Klaus Weihrauch,et al.  Computing Schrödinger propagators on Type-2 Turing machines , 2006, J. Complex..

[40]  Arno Pauly,et al.  Function Spaces for Second-Order Polynomial Time , 2014, CiE.

[41]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[42]  Klaus Weihrauch Electronic Colloquium on Computational Complexity, Report No. 14 (2002) Computational Complexity on Computable Metric Spaces , 2022 .

[43]  R. Cooke Real and Complex Analysis , 2011 .

[44]  Ulrich Kohlenbach,et al.  Some computational aspects of metric fixed-point theory , 2005 .

[45]  Bruce M. Kapron,et al.  On characterizations of the basic feasible functionals, Part I , 2001, Journal of Functional Programming.

[46]  Vasco Brattka,et al.  Towards computability of elliptic boundary value problems in variational formulation , 2006, J. Complex..