On the Processing of Very High Resolution Spaceborne SAR Data

This paper addresses several important aspects that need to be considered for the processing of spaceborne synthetic aperture radar (SAR) data with resolutions in the decimeter range. In particular, it will be shown how the motion of the satellite during the transmission/reception of the chirp signal and the effect of the troposphere deteriorate the impulse response function if not properly considered. Further aspects that have been investigated include the curved orbit, the array pattern for electronically steered antennas, and several considerations within the processing itself. For each aspect, a solution is proposed, and the complete focusing methodology is expounded and validated using simulated point targets and staring spotlight data acquired by TerraSAR-X with 16-cm azimuth resolution and 300-MHz range bandwidth.

[1]  Helko Breit,et al.  Noise-Related Radiometric Correction in the TerraSAR-X Multimode SAR Processor , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Irena Hajnsek,et al.  Very-High-Resolution Airborne Synthetic Aperture Radar Imaging: Signal Processing and Applications , 2013, Proceedings of the IEEE.

[3]  Gerhard Krieger,et al.  Bidirectional SAR Imaging Mode , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Marco Schwerdt,et al.  Calibration of the TerraSAR-X and the TanDEM-X satellite for the TerraSAR-X mission , 2012 .

[5]  Alberto Moreira,et al.  Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes , 1996, IEEE Trans. Geosci. Remote. Sens..

[6]  Søren Nørvang Madsen,et al.  Motion compensation for ultra wide band SAR , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[7]  David Small,et al.  Estimation of Atmospheric Path Delays in TerraSAR-X Data using Models vs. Measurements , 2008, Sensors.

[8]  Ian G. Cumming,et al.  Signal properties of spaceborne squint-mode SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[9]  Alberto Moreira,et al.  Estimation of tropospheric delays using synthetic aperture radar and squint diversity , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[10]  Helko Breit,et al.  TerraSAR-X SAR Processing and Products , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Helmut Süß,et al.  Depth-of-focus issues on spaceborne very high resolution SAR , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[12]  Josef Mittermayer,et al.  Staring spotlight imaging with TerraSAR-X , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Alberto Moreira,et al.  Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Jürgen Janoth,et al.  Terrasar next generation - Mission capabilities , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[15]  Marco Schwerdt,et al.  Final TerraSAR-X Calibration Results Based on Novel Efficient Methods , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Alberto Moreira,et al.  High precision SAR focusing of TerraSAR-X experimental staring spotlight data , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[17]  Oliver Montenbruck,et al.  TerraSAR-X Precise Trajectory Estimation and Quality Assessment , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Rolf Scheiber,et al.  Precise topography- and aperture-dependent motion compensation for airborne SAR , 2005, IEEE Geoscience and Remote Sensing Letters.

[19]  Andreas Reigber,et al.  TOPS Interferometry With TerraSAR-X , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[20]  B. Grafmuller,et al.  The TerraSAR-X antenna system , 2005, IEEE International Radar Conference, 2005..

[21]  Peter Steigenberger,et al.  Imaging Geodesy—Toward Centimeter-Level Ranging Accuracy With TerraSAR-X , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Davide D'Aria,et al.  High-Resolution Spaceborne SAR Focusing by SVD-Stolt , 2007, IEEE Geoscience and Remote Sensing Letters.

[23]  Jordi J. Mallorquí,et al.  Comparison of Topography- and Aperture-Dependent Motion Compensation Algorithms for Airborne SAR , 2007, IEEE Geoscience and Remote Sensing Letters.

[24]  Alberto Moreira,et al.  Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation , 1994, IEEE Trans. Geosci. Remote. Sens..

[25]  Josef Mittermayer,et al.  TOPS Imaging With TerraSAR-X: Mode Design and Performance Analysis , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Giorgio Franceschetti,et al.  Motion compensation of squinted airborne SAR raw data: role of processing geometry , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[27]  G. Fornaro Trajectory deviations in airborne SAR: analysis and compensation , 1999 .

[28]  R. Keith Raney,et al.  Precision SAR processing using chirp scaling , 1994, IEEE Trans. Geosci. Remote. Sens..

[29]  Marwan Younis,et al.  First bistatic spaceborne SAR experiments with TanDEM-X , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[30]  Giorgio Franceschetti,et al.  On center-beam approximation in SAR motion compensation , 2006, IEEE Geoscience and Remote Sensing Letters.

[31]  Fabio Rocca,et al.  Modeling Interferogram Stacks , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[32]  F. Rocca,et al.  SAR data focusing using seismic migration techniques , 1991 .

[33]  Riccardo Lanari A new method for the compensation of the SAR range cell migration based on the chirp z-transform , 1995, IEEE Trans. Geosci. Remote. Sens..

[34]  K. Eldhuset A new fourth-order processing algorithm for spaceborne SAR , 1998 .

[35]  Helmut Süß,et al.  Efficient and Precise Processing for Squinted Spotlight SAR through a Modified Stolt Mapping , 2007, EURASIP Journal on Advances in Signal Processing.

[36]  Gerhard Krieger,et al.  First Spaceborne Demonstration of Digital Beamforming for Azimuth Ambiguity Suppression , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[37]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[38]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[39]  Marc Rodriguez-Cassola,et al.  Doppler-related focusing aspects in the TOPS imaging mode , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[40]  Alberto Moreira,et al.  Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation , 2006 .

[41]  Carole E. Nahum,et al.  Airborne SAR-Efficient Signal Processing for Very High Resolution , 2013, Proceedings of the IEEE.

[42]  Josef Mittermayer,et al.  The TerraSAR-X Staring Spotlight Mode Concept , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Alberto Moreira,et al.  Spotlight SAR data processing using the frequency scaling algorithm , 1999, IEEE Trans. Geosci. Remote. Sens..

[44]  Angel Ribalta,et al.  Time-Domain Reconstruction Algorithms for FMCW-SAR , 2011, IEEE Geoscience and Remote Sensing Letters.

[45]  Franz J. Meyer,et al.  Processing of Bistatic SAR Data From Quasi-Stationary Configurations , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[46]  J. Mittermayer,et al.  Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[47]  Leo P. Ligthart,et al.  Signal Processing for FMCW SAR , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Josef Mittermayer,et al.  Scalloping Correction in TOPS Imaging Mode SAR Data , 2012, IEEE Geoscience and Remote Sensing Letters.

[49]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[50]  Gianfranco Fornaro,et al.  Spotlight SAR data focusing based on a two-step processing approach , 2001, IEEE Trans. Geosci. Remote. Sens..