Optical Computing With Nonlinear Optics
暂无分享,去创建一个
Nonlinear optics is becoming a new thrust in the field of optical computing and signal processing.14 Optical nonlinearity makes the device's transmission intensity dependent, so one can obtain the thresholding needed for logic decisionmaking. Thresholding is essential to digital optical computing, neural nets, and associative memories. GaAs etalons exhibit many of the characteristics desirable for the nonlinear devices including high speed (picosecond) and diode-laser compatability. However, demonstrations of the use of nonlinear decisionmaking for optical computing have used ZnS or ZnSe interference filters. They are slow (millisecond), but they can be used with the visible 514.5-nm output of an argon laser. We have used such filters to demonstrate all-optical logic operations, one-bit addition by symbolic substitution, and recognition of a three-spot pattern in an arbitrary 2 x 8 array of input beams. The application to associative memories is under study.