Uncertainty quantification for metal foam structures by means of image analysis

Abstract A metal foam may consist of a very heterogeneous structure, such that the size of the representative volume element is rather large. Therefore, macroscopic properties of components made of metal foams might show a large scatter. To predict the scatter of eigenfrequencies for bending beam structures, a consistent formulation from image analysis to the distribution of macroscopic properties is developed. With the help of computed tomography, statistical characteristics of the cell geometry of open cell foams are estimated. This information allows to fit a random tessellation model to the material, which reproduces the statistical properties of the cell geometry. To compute the linear elastic properties as well as the mass density of metal foams, three dimensional volume elements from random model realizations are analyzed and distributions of apparent properties are computed. The covariance function is estimated by considering volume elements at different locations of the macrostructure. Having a description of random fields for the apparent properties at hand, Monte Carlo simulations are applied to predict the eigenfrequencies, their scatter and the associated eigenforms of beams made of metal foams. The procedure is validated by experiments.

[1]  S. D. Papka,et al.  Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb , 1998 .

[2]  Martin Ostoja-Starzewski,et al.  Microstructural Randomness and Scaling in Mechanics of Materials , 2007 .

[3]  R. Christensen A comparison of open cell and closed cell properties for low-density materials , 2007 .

[4]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[5]  Lorna J. Gibson,et al.  Mechanical Behavior of Metallic Foams , 2000 .

[6]  L. Froyen,et al.  Investigation on the influence of cell shape anisotropy on the mechanical performance of closed cell aluminium foams using micro-computed tomography , 2005 .

[7]  A. Pineau,et al.  Deformation and fracture of aluminium foams under proportional and non proportional multi-axial loading : statistical analysis and size effect , 2004 .

[8]  Stelios Kyriakides,et al.  Compressive response of open cell foams part II: Initiation and evolution of crushing , 2005 .

[9]  R. Marissen,et al.  On the Linear Elastic Properties of Regular and Random Open-Cell Foam Models , 1997 .

[10]  C. Lautensack,et al.  Fitting three-dimensional Laguerre tessellations to foam structures , 2008 .

[11]  Lorna J. Gibson,et al.  Failure of aluminum foams under multiaxial loads , 2000 .

[12]  Michael F. Ashby,et al.  Failure surfaces for cellular materials under multiaxial loads—I.Modelling , 1989 .

[13]  Claudia Redenbach,et al.  Microstructure models for cellular materials , 2009 .

[14]  Jeffrey Wadsworth,et al.  Effect of cell morphology on the compressive properties of open-cell aluminum foams , 2000 .

[15]  Norman A. Fleck,et al.  Effect of imperfections on the yielding of two-dimensional foams , 1999 .

[16]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[17]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[18]  Wilfried Becker,et al.  Investigation of the fatigue behavior of open cell foams by a micromechanical 3-D model , 2009 .

[19]  U. Ramamurty,et al.  Variability in mechanical properties of a metal foam , 2004 .

[20]  Shanfu Zheng,et al.  Taylor Averaging on Heterogeneous Foams , 2003 .

[21]  O. Hopperstad,et al.  Static and dynamic crushing of square aluminium extrusions with aluminium foam filler , 2000 .

[22]  M. H. Luxner,et al.  Numerical simulations of 3D open cell structures - influence of structural irregularities on elasto-plasticity and deformation localization , 2007 .

[23]  George Stefanou,et al.  Assessment of spectral representation and Karhunen–Loève expansion methods for the simulation of Gaussian stochastic fields , 2007 .

[24]  Nobutada Ohno,et al.  Buckling behavior of Kelvin open-cell foams under [001], [011] and [111] compressive loads , 2008 .

[25]  N. J. Mills,et al.  Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells , 1997 .

[26]  S. Kyriakides,et al.  On the crushing of aluminum open-cell foams: Part II analysis , 2009 .

[27]  N. Arakere,et al.  Determination of mixed-mode stress intensity factors, fracture toughness, and crack turning angle for anisotropic foam material , 2008 .

[28]  W. Drugan,et al.  A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites , 1996 .

[29]  S. Kanaun,et al.  Mechanical Properties of Open Cell Foams: Simulations by Laguerre Tesselation Procedure , 2006 .

[30]  L. Gibson,et al.  Behavior of intact and damaged honeycombs: a finite element study , 1999 .

[31]  Nicolas Triantafyllidis,et al.  On the stability of Kelvin cell foams under compressive loads , 2005 .

[32]  B. Sankar,et al.  A micromechanical method to predict the fracture toughness of cellular materials , 2005 .

[33]  D. Reinelt,et al.  The Structure of Random Foam , 2006 .

[34]  N. Fleck,et al.  Compression fatigue of a cellular Al alloy , 1999 .

[35]  Michael F. Ashby,et al.  The effect of hole size upon the strength of metallic and polymeric foams , 2001 .

[36]  Patrick Onck,et al.  Cosserat modeling of cellular solids , 2002 .

[37]  Lorna J. Gibson,et al.  Compressive and tensile behaviour of aluminum foams , 1999 .

[38]  Strain-energy based homogenisation of two- and three-dimensional hyperelastic solid foams , 2005 .

[39]  E. Gdoutos,et al.  Failure of cellular foams under multiaxial loading , 2002 .

[40]  Xin-Lin Gao,et al.  Effects of cell shape and cell wall thickness variations on the elastic properties of two-dimensional cellular solids , 2005 .

[41]  Joachim Ohser,et al.  3D Images of Materials Structures: Processing and Analysis , 2009 .

[42]  S. D. Papka,et al.  Biaxial crushing of honeycombs: - Part 1: Experiments , 1999 .

[43]  R. Hall Effective Moduli of Cellular Materials , 1993 .

[44]  M. Ashby,et al.  Fatigue failure of an open cell and a closed cell aluminium alloy foam , 1999 .

[45]  Stelios Kyriakides,et al.  On the microstructure of open-cell foams and its effect on elastic properties , 2008 .

[46]  M. Ashby,et al.  The effect of non-uniformity on the in-plane modulus of honeycombs , 1999 .

[47]  Dietmar Gross,et al.  Bruchmechanik - mit einer Einführung in die Mikromechanik , 2001 .

[48]  Hanxing Zhu,et al.  Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs , 2001 .

[49]  M. Ashby,et al.  The creep of cellular solids , 1999 .

[50]  Stephen R Reid,et al.  Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations , 2005 .

[51]  W. E. Warren,et al.  Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials , 1987 .

[52]  N. Fleck,et al.  Isotropic constitutive models for metallic foams , 2000 .

[53]  S. Cheon,et al.  A multi-cell FE-model for compressive behaviour analysis of heterogeneous Al-alloy foam , 2006 .

[54]  Local probabilistic homogenization of two-dimensional model foams accounting for micro structural disorder , 2009 .

[55]  David L. McDowell,et al.  Yield surfaces of various periodic metal honeycombs at intermediate relative density , 2005 .

[56]  J. Hosson,et al.  Fracture of open- and closed-cell metal foams , 2005 .

[57]  Stephen R Reid,et al.  Dynamic compressive strength properties of aluminium foams. Part II—‘shock’ theory and comparison with experimental data and numerical models , 2005 .

[58]  I. Schmidt Deformation induced elasto-plastic anisotropy in metal foams – modelling and simulation , 2004 .

[59]  Stelios Kyriakides,et al.  On the crushing stress of open cell foams , 2006 .

[60]  The Scatter of Eigenfrequencies in Beams Made of Metal Foam , 2011 .

[61]  Karam Sab,et al.  Foam mechanics: nonlinear response of an elastic 3D-periodic microstructure , 2002 .

[62]  Norman A. Fleck,et al.  The mode I crack growth resistance of metallic foams , 2001 .

[63]  Christian Huet,et al.  Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume , 1994 .

[64]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[65]  Nobutada Ohno,et al.  Elastoplastic microscopic bifurcation and post-bifurcation behavior of periodic cellular solids , 2004 .

[66]  Pol D. Spanos,et al.  Karhunen-Loéve Expansion of Stochastic Processes with a Modified Exponential Covariance Kernel , 2007 .

[67]  Z. Ren,et al.  Computational modelling of irregular open‐cell foam behaviour under impact loading , 2008 .

[68]  N. El-Abbasi,et al.  FE modelling of deformation localization in metallic foams , 2002 .

[69]  Stelios Kyriakides,et al.  Compressive response of open-cell foams. Part I: Morphology and elastic properties , 2005 .

[70]  M. Schraad,et al.  ONSET OF FAILURE IN ALUMINUM HONEYCOMBS UNDER GENERAL IN-PLANE LOADING , 1998 .

[71]  M. Shinozuka,et al.  Simulation of Stochastic Processes by Spectral Representation , 1991 .

[72]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[73]  A. Waas,et al.  Size effects in metal foam cores for sandwich structures , 2003 .

[74]  O. Hopperstad,et al.  Crashworthiness of aluminium extrusions: validation of numerical simulation, effect of mass ratio and impact velocity , 1999 .

[75]  Lorna J. Gibson,et al.  The influence of cracks, notches and holes on the tensile strength of cellular solids , 2001 .

[76]  N. Ohno,et al.  Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation , 2002 .

[77]  M. Fuchs,et al.  Nucleation of cracks in two-dimensional periodic cellular materials , 2006 .

[78]  S. Kyriakides,et al.  On the crushing of aluminum open-cell foams: Part I. Experiments , 2009 .

[79]  Stelios Kyriakides,et al.  In-plane biaxial crushing of honeycombs—: Part II: Analysis , 1999 .

[80]  Lorna J. Gibson,et al.  The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids , 1997 .

[81]  Edward J. Garboczi,et al.  Elastic properties of model random three-dimensional open-cell solids , 2002 .

[82]  M. Ashby,et al.  Metal Foams: A Design Guide , 2000 .

[83]  W. Becker,et al.  A probabilistic approach to the numerical homogenization of irregular solid foams in the finite strain regime , 2005 .

[84]  O. Hopperstad,et al.  Validation of constitutive models applicable to aluminium foams , 2002 .

[85]  N. J. Mills,et al.  Analysis of the high strain compression of open-cell foams , 1997 .

[86]  Christian Huet,et al.  Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .

[87]  Michael F. Ashby,et al.  Cellular metals and metal foaming technology , 2001 .

[88]  George Stefanou,et al.  Computational Methods in Stochastic Dynamics , 2011 .

[89]  N. Fleck,et al.  Ductile fracture of two-dimensional cellular structures – Dedicated to Prof. Dr.-Ing. D. Gross on the occasion of his 60th birthday , 2001 .