The Null Space Property of the Truncated $\ell _{1-2}$ -Minimization

The null space property (NSP), which depends only on the null space of the column space of measurement matrix, has received much attention in compressed sensing. This letter considers NSP of the truncated <inline-formula> <tex-math notation="LaTeX">$\ell _{1-2}$</tex-math></inline-formula> minimization. It provides two versions of NSP of the truncated <inline-formula><tex-math notation="LaTeX">$\ell _{1-2}$</tex-math></inline-formula> minimization, under which we present sufficient conditions for the truncated <inline-formula><tex-math notation="LaTeX">$\ell _{1-2}$ </tex-math></inline-formula> minimization to recover sparse and compressible signals. In addition, we discuss that the truncated <inline-formula><tex-math notation="LaTeX">$\ell _{1-2}$</tex-math></inline-formula> stable NSP holds by Gaussian matrices of appropriate sizes with overwhelming probability.

[1]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[2]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[3]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[4]  Wotao Yin,et al.  Sparse Signal Reconstruction via Iterative Support Detection , 2009, SIAM J. Imaging Sci..

[5]  M. Lai,et al.  The null space property for sparse recovery from multiple measurement vectors , 2011 .

[6]  Wei Huang,et al.  The Exact Support Recovery of Sparse Signals With Noise via Orthogonal Matching Pursuit , 2013, IEEE Signal Processing Letters.

[7]  Anru Zhang,et al.  Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices , 2013, IEEE Transactions on Information Theory.

[8]  S. Foucart Stability and robustness of ℓ1-minimizations with Weibull matrices and redundant dictionaries , 2014 .

[9]  Jinming Wen,et al.  Stable Recovery of Sparse Signals via $l_p-$Minimization , 2014, ArXiv.

[10]  J. Xin,et al.  PhaseLiftOff: an Accurate and Stable Phase Retrieval Method Based on Difference of Trace and Frobenius Norms , 2014, 1406.6761.

[11]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[12]  Jack Xin,et al.  A Weighted Difference of Anisotropic and Isotropic Total Variation Model for Image Processing , 2015, SIAM J. Imaging Sci..

[13]  Jack Xin,et al.  Computing Sparse Representation in a Highly Coherent Dictionary Based on Difference of $$L_1$$L1 and $$L_2$$L2 , 2015, J. Sci. Comput..

[14]  Jack Xin,et al.  Minimization of ℓ1-2 for Compressed Sensing , 2015, SIAM J. Sci. Comput..

[15]  Jigen Peng,et al.  On the Null Space Property of -Minimization for in Compressed Sensing , 2015 .

[16]  Jack Xin,et al.  Point Source Super-resolution Via Non-convex $$L_1$$L1 Based Methods , 2016, J. Sci. Comput..

[17]  C. Webster,et al.  Unified sufficient conditions for uniform recovery of sparse signals via nonconvex minimizations , 2017 .

[18]  Ting-Zhu Huang,et al.  Truncated l1-2 Models for Sparse Recovery and Rank Minimization , 2017, SIAM J. Imaging Sci..

[19]  Jian Wang,et al.  A Sharp Condition for Exact Support Recovery With Orthogonal Matching Pursuit , 2017, IEEE Transactions on Signal Processing.

[20]  Liang Yan,et al.  Sparse Approximation using ℓ1-ℓ2 Minimization and Its Application to Stochastic Collocation , 2017, SIAM J. Sci. Comput..