An improved radial basis-pseudospectral method with hybrid Gaussian-cubic kernels
暂无分享,去创建一个
Mrinal K. Sen | Gregor Kosec | Mrinal K Sen | G. Kosec | S. Nath | P. Mishra | Pankaj K Mishra | Sankar K Nath
[1] Manuel Kindelan,et al. Radial basis function interpolation in the limit of increasingly flat basis functions , 2016, J. Comput. Phys..
[2] Xiaoyong Liu,et al. Radial Basis Function Neural Network Based on PSO with Mutation Operation to Solve Function Approximation Problem , 2010, ICSI.
[3] S. Sarra,et al. Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation , 2014 .
[4] G. Wright,et al. A hybrid radial basis function–pseudospectral method for thermal convection in a 3‐D spherical shell , 2010 .
[5] Gregory E. Fasshauer,et al. Analysis of natural frequencies of composite plates by an RBF-pseudospectral method , 2007 .
[6] B. Fornberg,et al. Some observations regarding interpolants in the limit of flat radial basis functions , 2003 .
[7] Scott A. Sarra,et al. A random variable shape parameter strategy for radial basis function approximation methods , 2009 .
[8] Louis J. Wicker,et al. Enhancing finite differences with radial basis functions: Experiments on the Navier-Stokes equations , 2016, J. Comput. Phys..
[9] A. Cheng. Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation , 2012 .
[10] Manuel Kindelan,et al. RBF-FD formulas and convergence properties , 2010, J. Comput. Phys..
[11] Bengt Fornberg,et al. A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..
[12] Gregory E. Fasshauer,et al. Preconditioning of Radial Basis Function Interpolation Systems via Accelerated Iterated Approximate Moving Least Squares Approximation , 2009 .
[13] Michael J. McCourt,et al. Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..
[14] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[15] Tobin A. Driscoll,et al. Eigenvalue stability of radial basis function discretizations for time-dependent problems , 2006, Comput. Math. Appl..
[16] Guirong Liu. Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .
[17] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces , 1971 .
[18] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[19] E. Kansa,et al. Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .
[20] Elisabeth Larsson,et al. Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..
[21] C.-S. Huang,et al. On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs , 2010 .
[22] A. Krowiak. Radial basis function-based pseudospectral method for static analysis of thin plates , 2016 .
[23] James Kennedy,et al. Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.
[24] B. Walczak,et al. Particle swarm optimization (PSO). A tutorial , 2015 .
[25] Mrinal K. Sen,et al. Hybrid Gaussian-cubic radial basis functions for scattered data interpolation , 2015, Computational Geosciences.
[26] Gregory E. Fasshauer,et al. Kernel-based Approximation Methods using MATLAB , 2015, Interdisciplinary Mathematical Sciences.
[27] Bengt Fornberg,et al. Stable computations with flat radial basis functions using vector-valued rational approximations , 2016, J. Comput. Phys..
[28] E. Kansa. MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .
[29] Stefano De Marchi,et al. A new stable basis for radial basis function interpolation , 2013, J. Comput. Appl. Math..
[30] N. Mozayani,et al. Adjusting the parameters of radial basis function networks using Particle Swarm Optimization , 2009, 2009 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications.
[31] C.M.C. Roque,et al. Numerical experiments on optimal shape parameters for radial basis functions , 2009 .
[32] G. Fasshauer. RBF Collocation Methods As PseudospectralMethods , 2005 .
[33] Marc Duflot,et al. Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..
[34] A. Cheng,et al. Direct solution of ill‐posed boundary value problems by radial basis function collocation method , 2005 .
[35] A. Biswas,et al. Application of Global Particle Swarm Optimization for Inversion of Residual Gravity Anomalies Over Geological Bodies with Idealized Geometries , 2016, Natural Resources Research.
[36] T. Driscoll,et al. Interpolation in the limit of increasingly flat radial basis functions , 2002 .
[37] Kamran Behdinan,et al. Particle swarm approach for structural design optimization , 2007 .
[38] Erik Lehto,et al. A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..
[39] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[40] E. J. Kansa,et al. Multi-quadrics-a scattered data approximation scheme with applications to computational fluid dynamics-II , 1990 .
[41] Y. Sanyasiraju,et al. Local RBF‐FD solutions for steady convection–diffusion problems , 2007 .
[42] Wen Chen,et al. Recent Advances in Radial Basis Function Collocation Methods , 2013 .
[43] Gregory E. Fasshauer,et al. Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method , 2006 .
[44] S. Sarra. A numerical study of the accuracy and stability of symmetric and asymmetric RBF collocation methods for hyperbolic PDEs , 2008 .
[45] Gregory E. Fasshauer,et al. On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.
[46] R. Franke. A Critical Comparison of Some Methods for Interpolation of Scattered Data , 1979 .
[47] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..
[48] B. Fornberg,et al. Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .
[49] Marjan Uddin,et al. RBF-PS scheme for solving the equal width equation , 2013, Appl. Math. Comput..
[50] G. Fasshauer. RBF Collocation Methods and Pseudospectral Methods , 2004 .
[51] A. U.S.,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .
[52] S. Sarra,et al. A numerical study of a technique for shifting eigenvalues of radial basis function differentiation matrices , 2011 .