Application of modified pyrolytic graphite electrode as a sensor in the simultaneous assay of adenine and adenosine monophosphate

Abstract A simple and sensitive method based on square wave voltammetry (SWV) at single-walled carbon nanotube (SWNT) modified edge plane pyrolytic graphite electrode (EPPGE) is proposed for the simultaneous determination of adenine and adenosine-5′-monophosphate (5′-AMP). The modified electrode exhibits remarkable electrocatalytic properties towards adenine and 5′-AMP oxidation with a peak potential of ∼850 and 1165 mV respectively. Linear calibration curves are obtained over the concentration range of 5–100 nM for adenine and 10–100 nM for 5′-AMP with sensitivity of 677 and 476 nA nM−1 for adenine and 5′-AMP respectively. The limit of detection for adenine and 5′-AMP was found to be 37 × 10−10 M and 76 × 10−10 M, respectively. The effect of pH revealed that the oxidation of adenine and 5′-AMP at SWNT modified EPPGE involved equal number of electrons and protons. The modified electrode exhibited high stability and reproducibility.

[1]  W. C. Purdy,et al.  The residual current in orthophosphate medium , 1962 .

[2]  Was adenine the first purine , 1989 .

[3]  S. Machado,et al.  Electroanalytical determination of the herbicide picloram in natural waters by square wave voltammetry , 2003 .

[4]  M. Fojta,et al.  Improved Electrochemical Detection of Purine Nucleobases at Mechanically Roughened Edge‐Plane Pyrolytic Graphite Electrode , 2009 .

[5]  A. Radi,et al.  Electrochemical Oxidation of the Hypoglycaemic Drug Gliclazide , 1999 .

[6]  Yuehe Lin,et al.  Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. , 2003, Journal of the American Chemical Society.

[7]  Hongyuan Chen,et al.  Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode , 2002 .

[8]  N. Li,et al.  Electrochemical study of the effect of ADP and AMP on the kinetics of glutamate dehydrogenase. , 2000, Bioelectrochemistry.

[9]  R. Goyal,et al.  The effect of modifying an edge-plane pyrolytic graphite electrode with single-wall carbon nanotubes on its use for sensing diclofenac , 2010 .

[10]  R. Goyal,et al.  Simultaneous voltammetric determination of dopamine and adenosine using a single walled carbon nanotube – Modified glassy carbon electrode , 2008 .

[11]  J. Schwarzmeier,et al.  Über den Adeninnukleotidgehalt (ATP, ADP, AMP) normaler menschlicher Skeletmuskulatur , 1971, Klinische Wochenschrift.

[12]  R. H. Wopschall,et al.  Effects of adsorption of electroactive species in stationary electrode polarography , 1967 .

[13]  Rajendra N. Goyal,et al.  Electrochemical investigations of adenosine at solid electrodes , 2002 .

[14]  I. Olafsson,et al.  Clinical features and genotype of adenine phosphoribosyltransferase deficiency in iceland. , 2001, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[15]  R. Goyal,et al.  Voltammetric determination of amlodipine besylate in human urine and pharmaceuticals. , 2010, Bioelectrochemistry.

[16]  Hongying Liu,et al.  Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA , 2008 .

[17]  Xiu-ling Xu,et al.  Application of a Single-Wall Carbon Nano-Tube Film Electrode to the Determination of Trace Amounts of Folic Acid , 2006 .

[18]  B. J. Venton,et al.  Transient adenosine efflux in the rat caudate–putamen , 2008, Journal of neurochemistry.

[19]  T. Cotton,et al.  Determination of purine bases by reversed-phase high-performance liquid chromatography using real-time surface-enhanced Raman spectroscopy , 1991 .

[20]  Rajendra N. Goyal,et al.  Electrochemical oxidation of adenosine monophosphate at a pyrolytic graphite electrode , 2003 .

[21]  Akira Fujishima,et al.  Simultaneous detection of purine and pyrimidine at highly boron-doped diamond electrodes by using liquid chromatography. , 2007, Talanta.

[22]  P. Ronner,et al.  Luminometric assays of ATP, phosphocreatine, and creatine for estimation of free ADP and free AMP. , 1999, Analytical biochemistry.

[23]  R. Goyal,et al.  Voltammetric quantification of adenine and guanine at C60 modified glassy carbon electrodes. , 2006, Journal of nanoscience and nanotechnology.

[24]  H. Chen,et al.  Simultaneous determination of purine bases, ribonucleosides and ribonucleotides by capillary electrophoresis-electrochemistry with a copper electrode. , 1997, Journal of chromatography. A.

[25]  L. Erbao,et al.  Flow injection determination of adenine at trace level based on luminol-K2Cr2O7 chemiluminescence in a micellar medium. , 2006, Journal of pharmaceutical and biomedical analysis.

[26]  Š. Komorsky-Lovrič,et al.  Voltammetric determination of benzoylecgonine , 1999 .

[27]  Zhennan Gu,et al.  Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. , 2002, Analytical chemistry.

[28]  M. Maurel,et al.  Adenine and RNA in mineral samples. Surface-enhanced Raman spectroscopy (SERS) for picomole detections. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[29]  Sunita Bishnoi,et al.  Voltammetric Determination of 2′-Deoxyadenosine and Adenine in Urine of Patients with Hepatocellular Carcinoma Using Fullerene-C60-modified Glassy Carbon Electrode , 2009 .

[30]  J. Peart,et al.  5'-Adenosine monophosphate and adenosine metabolism, and adenosine responses in mouse, rat and guinea pig heart. , 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[31]  H. Simmonds,et al.  Gout, uric acid and purine metabolism in paediatric nephrology , 1993, Pediatric Nephrology.

[32]  T. M. Devlin,et al.  Textbook of biochemistry: With clinical correlations , 1982 .