Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm

Abstract Nowadays, dispersive mirrors are able to cover the wavelength range of 4.5 optical octaves and can be used from 220 nm up to 4500 nm. Various design approaches to dispersive mirrors in visible and near IR are briefly discussed. We consider in more detail two dispersive mirrors representing extreme cases. The first one is a mirror working in the range of 290−360 nm and providing group delay dispersion of -75 fs2. The second one is a mirror working in the range of 2500−4500 nm and providing +500 fs2 of group delay dispersion.

[1]  P. Apai,et al.  Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires–Tournois interferometers , 2000 .

[2]  M. Lenner,et al.  Dispersion management in femtosecond laser oscillators with highly dispersive mirrors , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[3]  Günter Steinmeyer,et al.  Femtosecond dispersion compensation with multilayer coatings: toward the optical octave. , 2006, Applied optics.

[4]  G. Steinmeyer,et al.  Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical octave. , 2003, Optics express.

[5]  J Brons,et al.  High-dispersive mirrors for high power applications. , 2012, Optics express.

[6]  V Pervak,et al.  Chirped-pulse amplification of laser pulses with dispersive mirrors. , 2009, Optics express.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Ferenc Krausz,et al.  Attosecond dispersion control by extreme ultraviolet multilayer mirrors. , 2011, Optics express.

[9]  Volodymyr Pervak,et al.  Recent development and new ideas in the field of dispersive multilayer optics. , 2011, Applied optics.

[10]  V Pervak,et al.  Double-angle multilayer mirrors with smooth dispersion characteristics. , 2009, Optics express.

[11]  Vladimir Pervak,et al.  Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy. , 2012, Optics express.

[12]  A. Tikhonravov,et al.  Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses. , 2009, Optics express.

[13]  H. Haus,et al.  Design and fabrication of double-chirped mirrors. , 1997, Optics letters.

[14]  Philippe Balcou,et al.  Compression of attosecond harmonic pulses by extreme-ultraviolet chirped mirrors. , 2005, Optics letters.

[15]  K. Vodopyanov,et al.  Measurements of the group delay and the group delay dispersion with resonance scanning interferometer. , 2013, Optics express.

[16]  A. Tikhonravov,et al.  Optical coating design approaches based on the needle optimization technique. , 2007, Applied optics.

[17]  Andrew G. Glen,et al.  APPL , 2001 .

[18]  M. K. Trubetskov,et al.  Robust synthesis of dispersive mirrors. , 2011, Optics express.

[19]  Franz X Kärtner,et al.  Robust chirped mirrors. , 2008, Applied optics.

[20]  F. Krausz,et al.  Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. , 1994, Optics letters.

[21]  O. Svelto,et al.  Generation of high-energy 10-fs pulses by a new pulse compression technique , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[22]  Alexander V. Tikhonravov,et al.  1.5-octave chirped mirror for pulse compression down to sub-3 fs , 2007 .

[23]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[24]  V Pervak,et al.  High-dispersive mirrors for femtosecond lasers. , 2008, Optics express.

[25]  M Trubetskov,et al.  Time-domain approach for designing dispersive mirrors based on the needle optimization technique. Theory. , 2008, Optics Express.

[26]  V Pervak,et al.  Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers. , 2007, Optics letters.

[27]  Gabriel Tempea,et al.  Gires-Tournois interferometer type negative dispersion mirrors for deep ultraviolet pulse compression. , 2010, Optics express.

[28]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[29]  U. Keller,et al.  Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics , 2000 .

[30]  O. Nohadani,et al.  Improving thin-film manufacturing yield with robust optimization. , 2011, Applied optics.

[31]  Margaret M Murnane,et al.  Time-resolved momentum imaging system for molecular dynamics studies using a tabletop ultrafast extreme-ultraviolet light source. , 2008, The Review of scientific instruments.

[32]  James G. Fujimoto,et al.  Ultrabroadband double-chirped mirror pairs for generation of octave spectra , 2001 .

[33]  V. Yakovlev,et al.  Pulse compression with time-domain optimized chirped mirrors. , 2005, Optics express.

[34]  Ursula Keller,et al.  Theory of double-chirped mirrors , 1998 .

[35]  A. Tünnermann,et al.  Extreme-ultraviolet-induced oxidation of Mo/Si multilayers. , 2008, Applied optics.

[36]  U. Keller,et al.  Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation , 2004 .

[37]  Piergiorgio Nicolosi,et al.  Realization and characterization of an XUV multilayer coating for attosecond pulses. , 2009, Optics express.

[38]  U. Kleineberg,et al.  Design, fabrication, and analysis of chirped multilayer mirrors for reflection of extreme-ultraviolet attosecond pulses. , 2006, Applied optics.

[39]  Alexander V Tikhonravov,et al.  Modern design tools and a new paradigm in optical coating design. , 2012, Applied optics.

[40]  A. Tikhonravov,et al.  Application of the needle optimization technique to the design of optical coatings. , 1996, Applied optics.

[41]  B Golubovic,et al.  Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers. , 2000, Optics letters.