Quantum Error Correction

Quantum error correction is a set of methods to protect quantum information--that is, quantum states--from unwanted environmental interactions (decoherence) and other forms of noise. The information is stored in a quantum error-correcting code, which is a subspace in a larger Hilbert space. This code is designed so that the most common errors move the state into an error space orthogonal to the original code space while preserving the information in the state. It is possible to determine whether an error has occurred by a suitable measurement and to apply a unitary correction that returns the state to the code space, without measuring (and hence disturbing) the protected state itself. In general, codewords of a quantum code are entangled states. No code that stores information can protect against all possible errors; instead, codes are designed to correct a specific error set, which should be chosen to match the most likely types of noise. An error set is represented by a set of operators that can multiply the codeword state. Quantum error correction is used to protect information in quantum communication (where quantum states pass through noisy channels) and quantum computation (where quantum states are transformed through a sequence of imperfect computational steps in the presence of environmental decoherence to solve a computational problem). In quantum computation, error correction is just one component of fault-tolerant design.

[1]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[2]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[3]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[4]  J. Raimond,et al.  Quantum Computing: Dream or Nightmare? , 1996 .

[5]  Scott Aaronson,et al.  Quantum Computing since Democritus , 2013 .

[6]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[7]  Dieter Suter,et al.  Colloquium : Protecting quantum information against environmental noise , 2016 .

[8]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[9]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[10]  Institute for Scientific Interchange Foundation,et al.  Stabilizing Quantum Information , 1999 .

[11]  T. Brun,et al.  Teleportation-based Fault-tolerant Quantum Computation in Multi-qubit Large Block Codes , 2015, 1504.03913.

[12]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Gil Kalai,et al.  The Argument against Quantum Computers , 2019, Jerusalem Studies in Philosophy and History of Science.

[14]  D. Bacon,et al.  Quantum Error Correcting Subsystem Codes From Two Classical Linear Codes , 2006, quant-ph/0610088.

[15]  Daniel A. Lidar,et al.  Bang–Bang Operations from a Geometric Perspective , 2001, Quantum Inf. Process..

[16]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[17]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[18]  Raymond Laflamme,et al.  Thresholds for Universal Concatenated Quantum Codes. , 2016, Physical review letters.

[19]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[20]  R. Spekkens,et al.  Quantum Error Correcting Subsystems are Unitarily Recoverable Subsystems , 2006, quant-ph/0608045.

[21]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[22]  Frank Gaitan Quantum Error Correction and Fault Tolerant Quantum Computing , 2008 .

[23]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[24]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[25]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[26]  Markus Grassl,et al.  Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.

[27]  I. Devetak,et al.  General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.

[28]  David Poulin,et al.  Operator quantum error correction , 2006, Quantum Inf. Comput..

[29]  Igor Devetak,et al.  General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.

[30]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[31]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[32]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[33]  Ching-Yi Lai,et al.  Fault-tolerant preparation of stabilizer states for quantum Calderbank-Shor-Steane codes by classical error-correcting codes , 2016, 1605.05647.

[34]  Martin Suchara,et al.  Performance and error analysis of Knill's postselection scheme in a two-dimensional architecture , 2013, Quantum Inf. Comput..

[35]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[36]  R. Feynman Simulating physics with computers , 1999 .

[37]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[38]  R Laflamme,et al.  Benchmarking quantum computers: the five-qubit error correcting code. , 2001, Physical review letters.

[39]  Garry Bowen Entanglement required in achieving entanglement-assisted channel capacities , 2002 .

[40]  David P. DiVincenzo,et al.  Local fault-tolerant quantum computation , 2005 .

[41]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[42]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[44]  Andrew M. Steane Efficient fault-tolerant quantum computing , 1999, Nature.

[45]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[46]  Bart De Moor,et al.  Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.

[47]  Kempe,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.

[48]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[49]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[50]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[51]  Joel J. Wallman,et al.  Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.

[52]  N. Mermin Quantum Computer Science: An Introduction , 2007 .

[53]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[54]  E. Knill Fault-Tolerant Postselected Quantum Computation: Threshold Analysis , 2004 .

[55]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[56]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[57]  Andrew J. Landahl,et al.  Fault-tolerant quantum computing with color codes , 2011, 1108.5738.

[58]  D. Dieks Communication by EPR devices , 1982 .

[59]  Austin G. Fowler,et al.  Surface code quantum error correction incorporating accurate error propagation , 2010, Quantum Inf. Comput..

[60]  Daniel Gottesman Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, QCQC.

[61]  Gil Kalai,et al.  How Quantum Computers Fail: Quantum Codes, Correlations in Physical Systems, and Noise Accumulation , 2011, ArXiv.

[62]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[63]  Igor Devetak,et al.  Catalytic Quantum Error Correction , 2014, IEEE Transactions on Information Theory.

[64]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[65]  Ben Reichardt Fault-Tolerance Threshold for a Distance-Three Quantum Code , 2006, ICALP.

[66]  Steven Flammia,et al.  Performance of quantum error correction with coherent errors , 2018, Physical Review A.

[67]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[68]  M. Nielsen,et al.  Algebraic and information-theoretic conditions for operator quantum error correction , 2005, quant-ph/0506069.

[69]  Ben W. Reichardt Improved ancilla preparation scheme increases fault-tolerant threshold , 2004 .

[70]  Karolin Papst Principles Of Quantum Computation And Information , 2016 .

[71]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[72]  John Preskill,et al.  Combining dynamical decoupling with fault-tolerant quantum computation , 2009, 0911.3202.

[73]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[74]  Martin Suchara,et al.  Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.

[75]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[76]  Ashley M. Stephens,et al.  Fault-tolerant thresholds for quantum error correction with the surface code , 2013, 1311.5003.

[77]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[78]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[79]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[80]  Martin Rötteler,et al.  Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[81]  Raymond Laflamme,et al.  Quantum Analog of the MacWilliams Identities for Classical Coding Theory , 1997 .

[82]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[83]  G. Guo,et al.  Suppressing environmental noise in quantum computation through pulse control , 1999 .

[84]  J. D. Franson,et al.  Demonstration of quantum error correction using linear optics (4 pages) , 2005 .

[85]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[86]  Ben W. Reichardt,et al.  Fault-tolerant quantum error correction for Steane’s seven-qubit color code with few or no extra qubits , 2018, Quantum Science and Technology.

[87]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[88]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[89]  Michael E. Beverland,et al.  Universal transversal gates with color codes: A simplified approach , 2014, 1410.0069.

[90]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[91]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[92]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .

[93]  Noson S. Yanofsky,et al.  Quantum Computing for Computer Scientists , 2008 .

[94]  James L. Park The concept of transition in quantum mechanics , 1970 .

[95]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[96]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[97]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[98]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[99]  Jeongwan Haah,et al.  Magic state distillation with low space overhead and optimal asymptotic input count , 2017, 1703.07847.

[100]  Daniel A Lidar,et al.  Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. , 2002, Physical review letters.

[101]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[102]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[103]  Ching-Yi Lai,et al.  Efficient preparation of large-block-code ancilla states for fault-tolerant quantum computation , 2017, 1710.00389.

[104]  Benjamin J. Brown,et al.  Fault-tolerant error correction with the gauge color code , 2015, Nature Communications.

[105]  Rui Chao,et al.  Fault-tolerant quantum computation with few qubits , 2017, npj Quantum Information.

[106]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[107]  Matthew Ware,et al.  Experimental demonstration of Pauli-frame randomization on a superconducting qubit. , 2018, 1803.01818.

[108]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[109]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[110]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[111]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[112]  Rui Chao,et al.  Quantum Error Correction with Only Two Extra Qubits. , 2017, Physical review letters.

[113]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[114]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[115]  E. Knill Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.

[116]  M. Ben-Or,et al.  Limitations of Noisy Reversible Computation , 1996, quant-ph/9611028.

[117]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[118]  Andrew W. Cross,et al.  Codeword Stabilized Quantum Codes , 2009, IEEE Transactions on Information Theory.

[119]  C. Macchiavello,et al.  Error Correction in Quantum Communication , 1996, quant-ph/9602022.

[120]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[121]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[122]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[123]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[124]  R. Landauer The physical nature of information , 1996 .