Quantum Error Correction
暂无分享,去创建一个
[1] Mazyar Mirrahimi,et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.
[2] W. Wootters,et al. A single quantum cannot be cloned , 1982, Nature.
[3] P. Zanardi. Symmetrizing Evolutions , 1998, quant-ph/9809064.
[4] J. Raimond,et al. Quantum Computing: Dream or Nightmare? , 1996 .
[5] Scott Aaronson,et al. Quantum Computing since Democritus , 2013 .
[6] S. Lloyd,et al. DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.
[7] Dieter Suter,et al. Colloquium : Protecting quantum information against environmental noise , 2016 .
[8] John Preskill,et al. Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..
[9] Unruh. Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[10] Institute for Scientific Interchange Foundation,et al. Stabilizing Quantum Information , 1999 .
[11] T. Brun,et al. Teleportation-based Fault-tolerant Quantum Computation in Multi-qubit Large Block Codes , 2015, 1504.03913.
[12] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[13] Gil Kalai,et al. The Argument against Quantum Computers , 2019, Jerusalem Studies in Philosophy and History of Science.
[14] D. Bacon,et al. Quantum Error Correcting Subsystem Codes From Two Classical Linear Codes , 2006, quant-ph/0610088.
[15] Daniel A. Lidar,et al. Bang–Bang Operations from a Geometric Perspective , 2001, Quantum Inf. Process..
[16] R. Barends,et al. Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.
[17] Jean-Pierre Tillich,et al. Description of a quantum convolutional code. , 2003, Physical review letters.
[18] Raymond Laflamme,et al. Thresholds for Universal Concatenated Quantum Codes. , 2016, Physical review letters.
[19] D. Gottesman. Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.
[20] R. Spekkens,et al. Quantum Error Correcting Subsystems are Unitarily Recoverable Subsystems , 2006, quant-ph/0608045.
[21] E. Knill. Quantum computing with realistically noisy devices , 2005, Nature.
[22] Frank Gaitan. Quantum Error Correction and Fault Tolerant Quantum Computing , 2008 .
[23] A. Kitaev,et al. Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.
[24] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[25] D. Vitali,et al. Using parity kicks for decoherence control , 1998, quant-ph/9808055.
[26] Markus Grassl,et al. Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.
[27] I. Devetak,et al. General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.
[28] David Poulin,et al. Operator quantum error correction , 2006, Quantum Inf. Comput..
[29] Igor Devetak,et al. General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.
[30] P. Zanardi,et al. Noiseless Quantum Codes , 1997, quant-ph/9705044.
[31] Daniel Nigg,et al. Experimental Repetitive Quantum Error Correction , 2011, Science.
[32] E. Knill,et al. Theory of quantum error-correcting codes , 1997 .
[33] Ching-Yi Lai,et al. Fault-tolerant preparation of stabilizer states for quantum Calderbank-Shor-Steane codes by classical error-correcting codes , 2016, 1605.05647.
[34] Martin Suchara,et al. Performance and error analysis of Knill's postselection scheme in a two-dimensional architecture , 2013, Quantum Inf. Comput..
[35] A. Calderbank,et al. Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.
[36] R. Feynman. Simulating physics with computers , 1999 .
[37] S. Bravyi,et al. Magic-state distillation with low overhead , 2012, 1209.2426.
[38] R Laflamme,et al. Benchmarking quantum computers: the five-qubit error correcting code. , 2001, Physical review letters.
[39] Garry Bowen. Entanglement required in achieving entanglement-assisted channel capacities , 2002 .
[40] David P. DiVincenzo,et al. Local fault-tolerant quantum computation , 2005 .
[41] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[42] E. Knill,et al. Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[43] A. Fowler,et al. High-threshold universal quantum computation on the surface code , 2008, 0803.0272.
[44] Andrew M. Steane. Efficient fault-tolerant quantum computing , 1999, Nature.
[45] Steane,et al. Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.
[46] Bart De Moor,et al. Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.
[47] Kempe,et al. Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.
[48] D. Poulin. Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.
[49] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[50] L. Landau. Fault-tolerant quantum computation by anyons , 2003 .
[51] Joel J. Wallman,et al. Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.
[52] N. Mermin. Quantum Computer Science: An Introduction , 2007 .
[53] E. Knill,et al. Realization of quantum error correction , 2004, Nature.
[54] E. Knill. Fault-Tolerant Postselected Quantum Computation: Threshold Analysis , 2004 .
[55] P. Benioff. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .
[56] Gottesman. Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[57] Andrew J. Landahl,et al. Fault-tolerant quantum computing with color codes , 2011, 1108.5738.
[58] D. Dieks. Communication by EPR devices , 1982 .
[59] Austin G. Fowler,et al. Surface code quantum error correction incorporating accurate error propagation , 2010, Quantum Inf. Comput..
[60] Daniel Gottesman. Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, QCQC.
[61] Gil Kalai,et al. How Quantum Computers Fail: Quantum Codes, Correlations in Physical Systems, and Noise Accumulation , 2011, ArXiv.
[62] Dorit Aharonov,et al. Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .
[63] Igor Devetak,et al. Catalytic Quantum Error Correction , 2014, IEEE Transactions on Information Theory.
[64] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[65] Ben Reichardt. Fault-Tolerance Threshold for a Distance-Three Quantum Code , 2006, ICALP.
[66] Steven Flammia,et al. Performance of quantum error correction with coherent errors , 2018, Physical Review A.
[67] Viola,et al. Theory of quantum error correction for general noise , 2000, Physical review letters.
[68] M. Nielsen,et al. Algebraic and information-theoretic conditions for operator quantum error correction , 2005, quant-ph/0506069.
[69] Ben W. Reichardt. Improved ancilla preparation scheme increases fault-tolerant threshold , 2004 .
[70] Karolin Papst. Principles Of Quantum Computation And Information , 2016 .
[71] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.
[72] John Preskill,et al. Combining dynamical decoupling with fault-tolerant quantum computation , 2009, 0911.3202.
[73] Laflamme,et al. Perfect Quantum Error Correcting Code. , 1996, Physical review letters.
[74] Martin Suchara,et al. Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.
[75] H. Bombin. Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.
[76] Ashley M. Stephens,et al. Fault-tolerant thresholds for quantum error correction with the surface code , 2013, 1311.5003.
[77] John M. Martinis,et al. State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.
[78] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[79] Schumacher,et al. Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[80] Martin Rötteler,et al. Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.
[81] Raymond Laflamme,et al. Quantum Analog of the MacWilliams Identities for Classical Coding Theory , 1997 .
[82] Michael H. Freedman,et al. Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..
[83] G. Guo,et al. Suppressing environmental noise in quantum computation through pulse control , 1999 .
[84] J. D. Franson,et al. Demonstration of quantum error correction using linear optics (4 pages) , 2005 .
[85] D. Deutsch,et al. Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[86] Ben W. Reichardt,et al. Fault-tolerant quantum error correction for Steane’s seven-qubit color code with few or no extra qubits , 2018, Quantum Science and Technology.
[87] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[88] Luigi Frunzio,et al. Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.
[89] Michael E. Beverland,et al. Universal transversal gates with color codes: A simplified approach , 2014, 1410.0069.
[90] Andrew Chi-Chih Yao,et al. Quantum Circuit Complexity , 1993, FOCS.
[91] DiVincenzo,et al. Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.
[92] A. Kitaev. Quantum Error Correction with Imperfect Gates , 1997 .
[93] Noson S. Yanofsky,et al. Quantum Computing for Computer Scientists , 2008 .
[94] James L. Park. The concept of transition in quantum mechanics , 1970 .
[95] Seth Lloyd,et al. Universal Control of Decoupled Quantum Systems , 1999 .
[96] Raymond Laflamme,et al. A Theory of Quantum Error-Correcting Codes , 1996 .
[97] Timothy F. Havel,et al. EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.
[98] A. Kitaev. Quantum computations: algorithms and error correction , 1997 .
[99] Jeongwan Haah,et al. Magic state distillation with low space overhead and optimal asymptotic input count , 2017, 1703.07847.
[100] Daniel A Lidar,et al. Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. , 2002, Physical review letters.
[101] A. Steane. Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.
[102] M. Mariantoni,et al. Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.
[103] Ching-Yi Lai,et al. Efficient preparation of large-block-code ancilla states for fault-tolerant quantum computation , 2017, 1710.00389.
[104] Benjamin J. Brown,et al. Fault-tolerant error correction with the gauge color code , 2015, Nature Communications.
[105] Rui Chao,et al. Fault-tolerant quantum computation with few qubits , 2017, npj Quantum Information.
[106] Robert B. Griffiths,et al. Quantum Error Correction , 2011 .
[107] Matthew Ware,et al. Experimental demonstration of Pauli-frame randomization on a superconducting qubit. , 2018, 1803.01818.
[108] Ben Reichardt,et al. Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..
[109] David Poulin,et al. Unified and generalized approach to quantum error correction. , 2004, Physical review letters.
[110] Ben Reichardt,et al. Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.
[111] E. Knill,et al. Resilient Quantum Computation , 1998 .
[112] Rui Chao,et al. Quantum Error Correction with Only Two Extra Qubits. , 2017, Physical review letters.
[113] D. Deutsch. Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[114] E. Knill,et al. DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.
[115] E. Knill. Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.
[116] M. Ben-Or,et al. Limitations of Noisy Reversible Computation , 1996, quant-ph/9611028.
[117] J. Preskill. Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[118] Andrew W. Cross,et al. Codeword Stabilized Quantum Codes , 2009, IEEE Transactions on Information Theory.
[119] C. Macchiavello,et al. Error Correction in Quantum Communication , 1996, quant-ph/9602022.
[120] A. Steane. Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[121] Igor Devetak,et al. Correcting Quantum Errors with Entanglement , 2006, Science.
[122] D. Lidar,et al. Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.
[123] Eric M. Rains. Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.
[124] R. Landauer. The physical nature of information , 1996 .