Relevant information in optimized persistence vs. progeny strategies

Identifying and utilizing information is central to reproductive success. We study a scenario where a multicellular colony has to trade-off between utility of strategies for investment in persistence or progeny and the (Shannon-type) relevant information necessary to realize these strategies. We develop a general approach to treat such problems that involve iterated games where utility is determined by iterated play of a strategy and where, in turn, informational processing constraints limit the possible strategies.

[1]  J. B. Uexküll,et al.  Streifzüge durch die Umwelten von Tieren und Menschen : ein Bilderbuch unsichtbarer Welten , 1934 .

[2]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  Yoichiro Takada ON THE MATHEMATICAL THEORY OF COMMUNICATION , 1954 .

[4]  Ronald A. Howard,et al.  Information Value Theory , 1966, IEEE Trans. Syst. Sci. Cybern..

[5]  A. G. Oettinger,et al.  Language and information , 1968 .

[6]  A. Rapoport,et al.  An Optimal Strategy of Evolution , 1974, The Quarterly Review of Biology.

[7]  H. Maturana,et al.  Autopoiesis: the organization of living systems, its characterization and a model. , 1974, Currents in modern biology.

[8]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[9]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Stochastic Control , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[11]  J. Roughgarden Theory of Population Genetics and Evolutionary Ecology: An Introduction , 1995 .

[12]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[13]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[14]  Eric Horvitz,et al.  A Graph-Theoretic Analysis of Information Value , 1996, UAI.

[15]  S. Laughlin,et al.  The rate of information transfer at graded-potential synapses , 1996, Nature.

[16]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[17]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[18]  Chrystopher L. Nehaniv Meaning for observers and agents , 1999, Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014).

[19]  J. Wheeler Information, physics, quantum: the search for links , 1999 .

[20]  R. Michod Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality , 1999 .

[21]  T. D. Schneider,et al.  Evolution of biological information. , 2000, Nucleic acids research.

[22]  C. Adami,et al.  Evolution of Biological Complexity , 2000, Proc. Natl. Acad. Sci. USA.

[23]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[24]  Thomas Martinetz,et al.  An Information-Theoretic Approach for the Quantification of Relevance , 2001, ECAL.

[25]  Daniel Polani,et al.  Bioinformatic principles underlying the information content of transcription factor binding sites. , 2003, Journal of theoretical biology.

[26]  Denis Roze,et al.  Cooperation and conflict in the evolution of individuality. IV. Conflict mediation and evolvability in Volvox carteri. , 2003, Bio Systems.

[27]  Thomas Wennekers,et al.  Dynamical properties of strongly interacting Markov chains , 2003, Neural Networks.

[28]  Chrystopher L. Nehaniv,et al.  Organization of the information flow in the perception-action loop of evolved agents , 2004, Proceedings. 2004 NASA/DoD Conference on Evolvable Hardware, 2004..

[29]  Chrystopher L. Nehaniv,et al.  Empowerment: a universal agent-centric measure of control , 2005, 2005 IEEE Congress on Evolutionary Computation.

[30]  Chrystopher L. Nehaniv Self-replication, Evolvability and Asynchronicity in Stochastic Worlds , 2005, SAGA.

[31]  K. Siegrist How to Gamble If You Must , 2008 .