Real time correlation function in a single phase space integral beyond the linearized semiclassical initial value representation.

It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be expressed, without approximation, in the same form as the linearized approximation of the semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the exact theory they evolve according to generalized equations of motion that are derived here. Approximations to the exact equations of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the paper--the full Wigner dynamics (full WD) and the second order WD based on "Wigner trajectories" [H. W. Lee and M. D. Scully, J. Chem. Phys. 77, 4604 (1982)] and the full Donoso-Martens dynamics (full DMD) and the second order DMD based on "Donoso-Martens trajectories" [A. Donoso and C. C. Martens, Phys. Rev. Lett. 8722, 223202 (2001)]--all of which can be viewed as generalizations of the original LSC-IVR method. Numerical tests of the four versions of this new approach are made for two anharmonic model problems, and for each the momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation function (nonlinear operators) have been calculated. These four new approximate treatments are indeed seen to be significant improvements to the original LSC-IVR approximation.

[1]  K. Kinugawa,et al.  Effective potential analytic continuation approach for real time quantum correlation functions involving nonlinear operators. , 2005, The Journal of chemical physics.

[2]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[3]  Qiang Shi,et al.  Quantum-mechanical reaction rate constants from centroid molecular dynamics simulations , 2001 .

[4]  Vladimir A Mandelshtam,et al.  Quantum statistical mechanics with Gaussians: equilibrium properties of van der Waals clusters. , 2004, The Journal of chemical physics.

[5]  N Makri,et al.  Rigorous forward-backward semiclassical formulation of many-body dynamics. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Jian Liu,et al.  Bohm's formulation in imaginary time: estimation of energy eigenvalues , 2005 .

[7]  M. Scully,et al.  Wigner phase‐space description of a Morse oscillator , 1982 .

[8]  P. Rossky,et al.  Practical evaluation of condensed phase quantum correlation functions: A Feynman–Kleinert variational linearized path integral method , 2003 .

[9]  N. Makri,et al.  Finite Temperature Correlation Functions via Forward-Backward Semiclassical Dynamics † , 2001 .

[10]  William H. Miller,et al.  Classical S Matrix: Numerical Application to Inelastic Collisions , 1970 .

[11]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[12]  William H. Miller,et al.  Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems , 1998 .

[13]  N. Makri,et al.  Forward-backward semiclassical dynamics for systems of indistinguishable particles , 2004 .

[14]  P. Rossky,et al.  Quantum diffusion in liquid para-hydrogen: An application of the Feynman-Kleinert linearized path integral approximation , 2004 .

[15]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[16]  William H. Miller,et al.  Spiers Memorial Lecture Quantum and semiclassical theory of chemical reaction rates , 1998 .

[17]  Qiang Shi,et al.  Semiclassical Theory of Vibrational Energy Relaxation in the Condensed Phase , 2003 .

[18]  A. Neumaier,et al.  Gaussian resolutions for equilibrium density matrices , 2003, quant-ph/0306124.

[19]  Haobin Wang,et al.  Generalized forward–backward initial value representation for the calculation of correlation functions in complex systems , 2001 .

[20]  J. Shao,et al.  Forward-Backward Semiclassical Dynamics with Linear Scaling , 1999 .

[21]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[22]  Eric J. Heller,et al.  Cellular dynamics: A new semiclassical approach to time‐dependent quantum mechanics , 1991 .

[23]  N. Makri,et al.  Monte Carlo Bohmian Dynamics from Trajectory Stability Properties , 2004 .

[24]  William H Miller,et al.  Including quantum effects in the dynamics of complex (i.e., large) molecular systems. , 2006, The Journal of chemical physics.

[25]  Jianshu Cao,et al.  The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties , 1994 .

[26]  William H. Miller,et al.  The Semiclassical Initial Value Representation: A Potentially Practical Way for Adding Quantum Effects to Classical Molecular Dynamics Simulations , 2001 .

[27]  Ian R. Craig,et al.  Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. , 2004, The Journal of chemical physics.

[28]  W. Miller,et al.  Forward-backward initial value representation for semiclassical time correlation functions , 1999 .

[29]  K. Kay,et al.  Numerical study of semiclassical initial value methods for dynamics , 1994 .

[30]  C. cohen-tannoudji,et al.  Quantum Optics and Electronics , 1965 .

[31]  N. Makri,et al.  Forward-backward semiclassical dynamics for condensed phase time correlation functions , 2003 .

[32]  N. Makri,et al.  Phase space features and statistical aspects of forward - Backward semiclassical dynamics , 2004 .

[33]  Bruce J. Berne,et al.  On the Calculation of Time Correlation Functions , 2007 .

[34]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[35]  M. Scully,et al.  A new approach to molecular collisions: Statistical quasiclassical method , 1980 .

[36]  Semiclassical propagator of the Wigner function. , 2005, Physical review letters.

[37]  Jian Liu,et al.  Using the thermal Gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions. , 2006, The Journal of chemical physics.

[38]  Eric J. Heller,et al.  Wigner phase space method: Analysis for semiclassical applications , 1976 .

[39]  A. Donoso,et al.  Quantum tunneling using entangled classical trajectories. , 2001, Physical review letters.

[40]  E. Kluk,et al.  A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations , 1984 .

[41]  K. Kay,et al.  Integral expressions for the semiclassical time‐dependent propagator , 1994 .

[42]  William H. Miller,et al.  Quantum mechanical rate constants for bimolecular reactions , 1983 .

[43]  M. Scully,et al.  Distribution functions in physics: Fundamentals , 1984 .

[44]  Nancy Makri,et al.  Semiclassical influence functionals for quantum systems in anharmonic environments 1 Presented at th , 1998 .

[45]  E. Heller Reply to Comment on: Semiclassical time evolution without root searches: Comments and perspective , 1991 .

[46]  Ian R. Craig,et al.  Inelastic neutron scattering from liquid para-hydrogen by ring polymer molecular dynamics , 2006 .

[47]  William H. Miller,et al.  Comment on: Semiclassical time evolution without root searches , 1991 .

[48]  N. Makri,et al.  Symmetries and detailed balance in forward–backward semiclassical dynamics , 2006 .

[49]  E. Pollak,et al.  Forward-backward semiclassical initial value series representation of quantum correlation functions. , 2006, The Journal of chemical physics.

[50]  Pierre-Nicholas Roy,et al.  A Feynman path centroid dynamics approach for the computation of time correlation functions involving nonlinear operators , 2000 .

[51]  Gregory A. Voth,et al.  A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables , 1999 .

[52]  Qiang Shi,et al.  Vibrational energy relaxation in liquid oxygen from a semiclassical molecular dynamics simulation , 2003 .

[53]  J. Shao,et al.  Forward-Backward Semiclassical Dynamics without Prefactors , 1999 .

[54]  N. Makri,et al.  Long-time behaviour of quantized distributions in forward–backward semiclassical dynamics , 2006 .

[55]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[56]  Hai-Woong Lee,et al.  Theory and application of the quantum phase-space distribution functions , 1995 .