Optimal Control Framework for Impulsive Missile Interception Guidance

An optimal control framework is presented that provides an endgame guidance scheme for the exo-atmospheric interception of hostile intercontinental missiles. Therein, a receding horizon optimization strategy is deployed, using a multiple shooting discretization of the dynamic system. The control parameterization is based on a specific endgame heuristic, so that acceleration commands can be approximated by a tangens hyperbolicus formulation to emulate the discrete structure of impulsive thruster acceleration commands. As a result, the number of optimization variables is significantly reduced, potentially enabling closed-loop control schemes. As a closed-loop algorithm, a modified nonlinear model predictive control approach is proposed. Numerical investigations are presented that address the endgame problem in the simplified environment of an interception plane.

[1]  Sebastian Sager,et al.  Numerical methods for mixed-integer optimal control problems , 2006 .

[2]  Oleg A. Yakimenko,et al.  Trajectory-Shape-Varying Missile Guidance for Interception of Ballistic Missiles during the Boost Phase , 2007 .

[3]  Azriel Lorber,et al.  Theater Ballistic Missile Defense , 2001 .

[4]  Hans Bock,et al.  An Efficient Algorithm for Nonlinear Model Predictive Control of Large-Scale Systems Part I: Description of the Method (Ein effizienter Algorithmus für die nichtlineare prädiktive Regelung großer Systeme Teil I: Methodenbeschreibung) , 2002 .

[5]  George M Siouris,et al.  Missile Guidance and Control Systems , 2004 .

[6]  Jesse Pietz Pseudospectral collocation methods for the direct transcription of optimal control problems , 2003 .

[7]  Paul Zarchan,et al.  Tactical and strategic missile guidance , 1990 .

[8]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[9]  Abolghasem Naghash,et al.  Optimal Guidance Based on Receding Horizon Control and Online Trajectory Optimization , 2013 .

[10]  Matthias Gerdts,et al.  A variable time transformation method for mixed‐integer optimal control problems , 2006 .

[11]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[12]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[13]  Joseph Z. Ben-Asher,et al.  Optimal control theory with aerospace applications , 2010 .

[14]  Matthias Bittner,et al.  Application of MINLP Techniques to Conflict Resolution of Multiple Aircraft , 2014 .

[15]  Moritz Diehl,et al.  Real-Time Optimization for Large Scale Nonlinear Processes , 2001 .

[16]  Josef Stoer,et al.  Numerische Mathematik 2 , 1990 .

[17]  T. Grundy,et al.  Progress in Astronautics and Aeronautics , 2001 .

[18]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[19]  Stuart Andrew Stanton,et al.  Finite set control transcription for optimal control applications , 2010 .

[20]  R. Fletcher Practical Methods of Optimization , 1988 .

[21]  Kai Virtanen,et al.  Near-Optimal Missile Avoidance Trajectories via Receding Horizon Control , 2006 .