Lateral optical force on chiral particles near a surface

Light can exert radiation pressure on any object it encounters and that resulting optical force can be used to manipulate particles. It is commonly assumed that light should move a particle forward and indeed an incident plane wave with a photon momentum ħk can only push any particle, independent of its properties, in the direction of k. Here we demonstrate, using full-wave simulations, that an anomalous lateral force can be induced in a direction perpendicular to that of the incident photon momentum if a chiral particle is placed above a substrate that does not break any left–right symmetry. Analytical theory shows that the lateral force emerges from the coupling between structural chirality (the handedness of the chiral particle) and the light reflected from the substrate surface. Such coupling induces a sideway force that pushes chiral particles with opposite handedness in opposite directions.

[1]  J. Kong Electromagnetic Wave Theory , 1986 .

[2]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[3]  J. Sáenz,et al.  Scattering forces and electromagnetic momentum density in crossed circularly polarized standing waves. , 2012, Optics letters.

[4]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[5]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[6]  Alan D. Raisanen,et al.  Stable optical lift , 2010 .

[7]  Xiang Zhang,et al.  Photoinduced handedness switching in terahertz chiral metamolecules , 2012, Nature Communications.

[8]  Cheng-Wei Qiu,et al.  Single gradientless light beam drags particles as tractor beams. , 2011, Physical review letters.

[9]  Ari Sihvola,et al.  Electromagnetic Waves in Bi-Isotropic and Chiral Media , 1994 .

[10]  T. Ebbesen,et al.  Force and torque on an electric dipole by spinning light fields , 2013, 1306.2050.

[11]  J. Sáenz,et al.  Optical forces on small magnetodielectric particles. , 2010, Optics express.

[12]  Juan José Sáenz,et al.  Optical forces: Laser tractor beams , 2011 .

[13]  Stephen M. Barnett,et al.  Optical Angular Momentum , 2003 .

[14]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[15]  Optical activity in chiral media composed of three-dimensional metallic meta-atoms , 2009 .

[16]  B. Spivak,et al.  Photoinduced separation of chiral isomers in a classical buffer gas. , 2008, Physical review letters.

[17]  D. Grier A revolution in optical manipulation , 2003, Nature.

[18]  F. J. Rodríguez-Fortuño,et al.  Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes , 2013, Science.

[19]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[20]  Xiang Zhang,et al.  Light-driven nanoscale plasmonic motors. , 2010, Nature nanotechnology.

[21]  M J Padgett,et al.  Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. , 2002, Physical review letters.

[22]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[23]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[24]  K. Bliokh,et al.  Internal flows and energy circulation in light beams , 2010, 1011.0862.

[25]  Akhlesh Lakhtakia,et al.  Selected papers on natural optical activity , 1990 .

[26]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[27]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[28]  P. Chaumet,et al.  Electromagnetic force and torque on magnetic and negative-index scatterers. , 2009, Optics express.

[29]  Tian Jiang,et al.  Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures , 2012 .

[30]  Xiang Zhang,et al.  Negative refractive index in chiral metamaterials. , 2009, Physical review letters.

[31]  Juan José Sáenz,et al.  Scattering forces from the curl of the spin angular momentum of a light field. , 2009, Physical review letters.

[32]  Ismo V. Lindell,et al.  Electromagnetic Waves in Chiral and Bi-Isotropic Media , 1994 .

[33]  Yong-Hee Lee,et al.  Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. , 2011, Nature communications.

[34]  R. Gonzalo,et al.  Near-field electromagnetic trapping through curl-spin forces , 2013 .

[35]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[36]  E. Brasselet,et al.  Spin controlled optical radiation pressure. , 2013 .

[37]  Lei Zhou,et al.  Realization of optical pulling forces using chirality , 2014 .

[38]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[39]  V. Varadan,et al.  Equivalent dipole moments of helical arrangements of small, isotropic, point‐polarizable scatters: Application to chiral polymer design , 1988 .

[40]  Peter F. Barker,et al.  Laser-driven acceleration of neutral particles , 2012, Nature Photonics.

[41]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[42]  Alexander Szameit,et al.  Photonic Floquet Topological Insulators , 2013, CLEO 2013.

[43]  H. Ammari,et al.  Time-harmonic Electromagnetic Fields in Chiral Media , 1996 .

[44]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[45]  C. cohen-tannoudji,et al.  Photons and Atoms: Introduction to Quantum Electrodynamics , 1989 .

[46]  T. Brixner,et al.  Nanoscale force manipulation in the vicinity of a metal nanostructure , 2007 .

[47]  H. Rubinsztein-Dunlop,et al.  Optical angular-momentum transfer to trapped absorbing particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[48]  Cheng-Wei Qiu,et al.  Linear momentum increase and negative optical forces at dielectric interface , 2013, Nature Photonics.

[49]  Jun Chen,et al.  Optical pulling force , 2011 .

[50]  Manuel Nieto-Vesperinas,et al.  Nonconservative electric and magnetic optical forces on submicron dielectric particles , 2011 .

[51]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[52]  E. Hasman,et al.  Spin-Optical Metamaterial Route to Spin-Controlled Photonics , 2013, Science.

[53]  Hong-qiang Li,et al.  Metallic helix array as a broadband wave plate. , 2011, Physical review letters.

[54]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[55]  David Taylor One by One , 1984 .

[56]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[57]  Mincheng Zhong,et al.  Trapping red blood cells in living animals using optical tweezers , 2013, Nature Communications.

[58]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[59]  S. Ramakrishna,et al.  Physics and Applications of Negative Refractive Index Materials , 2008 .

[60]  Demetrios N. Christodoulides,et al.  Optical trapping: Riding along an Airy beam , 2008 .

[61]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[62]  Aristide Dogariu,et al.  Optically induced 'negative forces' , 2012, Nature Photonics.

[63]  Zeyong Wei,et al.  Theory and experimental realization of negative refraction in a metallic helix array. , 2010, Physical review letters.