Signal transduction in Mimosa pudica: biologically closed electrical circuits.

Biologically closed electrical circuits operate over large distances in biological tissues. The activation of such circuits can lead to various physiological and biophysical responses. Here, we analyse the biologically closed electrical circuits of the sensitive plant Mimosa pudica Linn. using electrostimulation of a petiole or pulvinus by the charged capacitor method, and evaluate the equivalent electrical scheme of electrical signal transduction inside the plant. The discharge of a 100 microF capacitor in the pulvinus resulted in the downward fall of the petiole in a few seconds, if the capacitor was charged beforehand by a 1.5 V power supply. Upon disconnection of the capacitor from Ag/AgCl electrodes, the petiole slowly relaxed to the initial position. The electrical properties of the M. pudica were investigated, and an equivalent electrical circuit was proposed that explains the experimental data.

[1]  Peter W. Barlow,et al.  Reflections on 'plant neurobiology' , 2008, Biosyst..

[2]  J. Fromm,et al.  Control of phloem unloading by action potentials in Mimosa , 1991 .

[3]  M. I. Zhang,et al.  Electrical Impedance Analysis in Plant Tissues11 , 1990 .

[4]  C. Darwin Insectivorous plants, by Charles Darwin. , 1875 .

[5]  Vladislav S. Markin,et al.  Biologically Closed Electrical Circuits in Venus Flytrap[OA] , 2009, Plant Physiology.

[6]  A. Bulychev,et al.  Electro-induced changes of chlorophyll fluorescence in individual intact chloroplasts , 1986 .

[7]  H. Kaiser,et al.  Rapid hydropassive opening and subsequent active stomatal closure follow heat-induced electrical signals in Mimosa pudica. , 2006, Journal of experimental botany.

[8]  A. Bulychev,et al.  Light-Triggered Action Potentials and Changes in Quantum Efficiency of Photosystem II in Anthoceros Cells , 2005, Russian Journal of Plant Physiology.

[9]  Takeshi Abe The shortening and action potential of the cortex in the main pulvinus ofMimosa pudica , 1980, The botanical magazine = Shokubutsu-gaku-zasshi.

[10]  K. Umrath Der Erregungsvorgang bei höheren Pflanzen , 1937 .

[11]  A. Volkov,et al.  Electrical memory in Venus flytrap. , 2009, Bioelectrochemistry.

[12]  Hiroyuki Kagawa,et al.  A Model on the Main Pulvinus Movement of Mimosa Pudica , 2000 .

[13]  A. Volkov,et al.  Solitary waves in soybean induced by localized thermal stress , 2008, Plant signaling & behavior.

[14]  T. Sibaoka,et al.  Rapid plant movements triggered by action potentials , 1991, The botanical magazine = Shokubutsu-gaku-zasshi.

[15]  A. L. Houwink,et al.  The conduction of excitation in Mimosa pudica , 1935 .

[16]  M. I. Zhang,et al.  Electrical Impedance Analysis in Plant Tissues: A Double Shell Model , 1991 .

[17]  Björn E. W. Nordenström,et al.  Biologically Closed Electric Circuits: Clinical, Experimental and Theoretical Evidence for an Additional Circulatory System , 1983 .

[18]  Emil Jovanov,et al.  Closing of Venus Flytrap by Electrical Stimulation of Motor Cells , 2007, Plant signaling & behavior.

[19]  R. Balmer,et al.  Contractile Characteristics of Mimosa pudica L. , 1975, Plant physiology.

[20]  R. Benz,et al.  Contribution of electrogenic ion transport to impedance of the algae Valonia utricularis and artificial membranes. , 1994, Biophysical journal.

[21]  F. Sachs,et al.  Thermodynamics of mechanosensitivity , 2004, Physical biology.

[22]  K. Oda,et al.  Action potential and rapid movement in the main pulvinus ofMimosa pudica , 1972, The botanical magazine = Shokubutsu-gaku-zasshi.

[23]  G. Roblin,et al.  Redistribution of potassium, chloride and calcium during the gravitropically induced movement of Mimosa pudica pulvinus , 1987, Planta.

[24]  A. Trewavas Green plants as intelligent organisms. , 2005, Trends in plant science.

[25]  Rainer Matyssek,et al.  Transient knockout of photosynthesis mediated by electrical signals. , 2004, The New phytologist.

[26]  Emil Jovanov,et al.  Plant electrical memory , 2008 .

[27]  G. ROBLIN,et al.  MIMOSA PUDICA: A MODEL FOR THE STUDY OF THE EXCITABILITY IN PLANTS , 1979 .

[28]  Saïd Laarabi,et al.  Impédance in vivo des organes aériens de certaines plantes mono- et dicotylédones , 2005 .

[29]  K. Oda,et al.  Resting and action potentials of excitabl cells in the main pulvinus of Mimosa pudica , 1976 .

[30]  Jörg Fromm,et al.  Transport processes in stimulated and non-stimulated leaves of Mimosa pudica , 1988, Trees.

[31]  Takeshi Abe Chloride ion efflux during an action potential in the main pulvinus ofMimosa pudica , 1981, The botanical magazine = Shokubutsu-gaku-zasshi.

[32]  J. Bonnemain,et al.  Increased Expression of Vacuolar Aquaporin and H+-ATPase Related to Motor Cell Function in Mimosa pudica L , 1997, Plant physiology.

[33]  Anthony Trewavas,et al.  Aspects of plant intelligence. , 2003, Annals of botany.

[34]  S. Burnasheva,et al.  [Mimosa pudica adenosine triphosphatase]. , 1978, Biokhimiia.

[35]  M. Malone,et al.  Rapid, Long-distance Signal Transmission in Higher Plants , 1996 .

[36]  J. Fromm,et al.  Electrical signals and their physiological significance in plants. , 2007, Plant, cell & environment.

[37]  T. Sibaoka Action potentials in plant organs. , 1966, Symposia of the Society for Experimental Biology.

[38]  N. Kanzawa,et al.  Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation , 2005, FEBS letters.

[39]  M. Yuan,et al.  Actin dynamics mediates the changes of calcium level during the pulvinus movement of Mimosa pudica , 2008, Plant signaling & behavior.

[40]  T. Shimmen Electrophysiology in Mechanosensing and Wounding Response , 2006 .

[41]  G. Roblin Movements, Bioelectrical Events and Proton Excretion Induced in the Pulvini of Mimosa pudica L. by a Period of Darkness , 1982 .

[42]  A. Volkov,et al.  Nanodevices in Nature , 2007 .

[43]  M. Malone,et al.  Wound-induced hydraulic signals and stimulus transmission in Mimosa pudica L. , 1994, The New phytologist.

[44]  N. Kanzawa,et al.  Tyrosine phosphorylation in plant bending , 2000, Nature.

[45]  T. Sibaoka Excitable Cells in Mimosa , 1962, Science.

[46]  Alexander G. Volkov,et al.  Green plants: electrochemical interfaces , 2000 .

[47]  J. Bose Researches on irritability of plants, by Jagadis Chunder Bose ... , 1913 .

[48]  Holly Carrell,et al.  Molecular Electronics of the Dionaea muscipula trap , 2009, Plant signaling & behavior.

[49]  Emil Jovanov,et al.  Kinetics and Mechanism of Dionaea muscipula Trap Closing1[C][OA] , 2007, Plant Physiology.

[50]  D. Osborne Movements in Plants , 1970, Nature.

[51]  Courtney L. Brown,et al.  Electrochemistry of Plant Life , 2006 .

[52]  M. Samejima,et al.  Membrane Potentials and Resistances of Excitable Cells in the Petiole and Main Pulvinus of Mimosa pudica , 1982 .

[53]  T Miyazaki,et al.  Movement of water in conjunction with plant movement visualized by NMR imaging. , 1988, Journal of biochemistry.

[54]  Emil Jovanov,et al.  Active movements in plants , 2008, Plant signaling & behavior.

[55]  Vladislav S. Markin,et al.  Inhibition of the Dionaea muscipula Ellis trap closure by ion and water channels blockers and uncouplers , 2008 .

[56]  D. Gradmann,et al.  Laser-Interferometric Re-examination of Rapid Conductance of Excitation in Mimosa pudica , 1990 .

[57]  K. Takeda,et al.  Plasmalemmal, voltage-dependent ionic currents from excitable pulvinar motor cells ofMimosa pudica , 1993, The Journal of Membrane Biology.

[58]  J. C. Bose,et al.  The Nervous Mechanism of Plants , 1926, Nature.

[59]  A. Volkov,et al.  Insect-induced biolectrochemical signals in potato plants , 1995 .

[60]  T. Sibaoka,et al.  Physiology of Rapid Movements in Higher Plants , 1969 .