Modification of the subcontinental mantle beneath East Serbia: evidence from orthopyroxene-rich xenoliths

[1]  R. Romer,et al.  Tertiary Ultrapotassic Volcanism in Serbia: Constraints on Petrogenesis and Mantle Source Characteristics , 2005 .

[2]  M. Economou-Eliopoulos,et al.  Fluid inclusions in chromite from a pyroxenite dike of the Pindos ophiolite complex , 2005 .

[3]  D. Prelević,et al.  Characteristics of the lithospheric mantle beneath East Serbia inferred from ultramafic xenoliths in Palaeogene basanites , 2004 .

[4]  Z. Homonnay,et al.  Trace element and C–O–Sr–Nd isotope evidence for subduction-related carbonate–silicate melts in mantle xenoliths (Pannonian Basin, Hungary) , 2004 .

[5]  L. Beccaluva,et al.  Coexisting anorogenic and subduction-related metasomatism in mantle xenoliths from the Betic Cordillera (southern Spain) , 2004 .

[6]  R. Hinton,et al.  Natural experimental charges: an ion-microprobe study of trace element distribution coefficients in glass-rich hornblendite and clinopyroxenite xenoliths , 2004 .

[7]  G. Delpech,et al.  Feldspar from carbonate-rich silicate metasomatism in the shallow oceanic mantle under Kerguelen Islands (South Indian Ocean) , 2004 .

[8]  Z. Pécskay,et al.  Origin and geodynamic significance of Tertiary postcollisional basaltic magmatism in Serbia (central Balkan Peninsula) , 2004 .

[9]  D. Bosch,et al.  Geodynamic implications of deep mantle upwelling in the source of Tertiary volcanics from the Veneto region (South-Eastern Alps) , 2003 .

[10]  W. Griffin,et al.  Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China , 2003 .

[11]  V. Okrugin,et al.  Metasomatized harzburgite xenoliths from Avacha volcano as fragments of mantle wedge of the Kamchatka arc: Implication for the metasomatic agent , 2003 .

[12]  R. Klemd,et al.  Density contrast of fluid inclusions associated with melt (glass) from two distinct suites of mantle peridotites from the West Eifel, Germany Implications for melt origin , 2003 .

[13]  N. Cook,et al.  Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt , 2002 .

[14]  Chien-Chih Chen,et al.  Geochemical constraints on the petrogenesis of high-Mg basaltic andesites from the Northern Taiwan Volcanic Zone , 2002 .

[15]  E. Christiansen,et al.  Contributions from mafic alkaline magmas to the Bingham porphyry Cu–Au–Mo deposit, Utah, USA , 2002 .

[16]  U. Schärer,et al.  Genesis of Pyroxenite-rich Peridotite at Cabo Ortegal (NW Spain): Geochemical and Pb-Sr-Nd Isotope Data , 2002 .

[17]  B. McInnes,et al.  Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: Part 2. Trace element characteristics of slab-derived fluids , 2001 .

[18]  B. McInnes,et al.  Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea , 2001 .

[19]  H. Meyer,et al.  Thermal evolution of the lithosphere beneath the western Pannonian Basin; evidence from deep-seated xenoliths , 2001 .

[20]  H. Downes Formation and modification of the shallow sub-continental lithospheric mantle: evidence from ultramafic xenoliths suites and massifs of western and central Europe , 2001 .

[21]  H. Downes Formation and Modification of the Shallow Sub-continental Lithospheric Mantle: a Review of Geochemical Evidence from Ultramafic Xenolith Suites and Tectonically Emplaced Ultramafic Massifs of Western and Central Europe , 2001 .

[22]  R. Vannucci,et al.  Metasomatism and Melting in Carbonated Peridotite Xenoliths from the Mantle Wedge: The Gobernador Gregores Case (Southern Patagonia) , 2001 .

[23]  O. Vaselli,et al.  Paleogene mafic alkaline volcanic rocks of East Serbia , 2001 .

[24]  S. Arai,et al.  Origin of fine‐grained peridotite xenoliths from Iraya volcano of Batan Island, Philippines: deserpentinization or metasomatism at the wedge mantle beneath an incipient arc? , 2000 .

[25]  S. Kay,et al.  Carbonatite metasomatized peridotite xenoliths from southern Patagonia: implications for lithospheric processes and Neogene plateau magmatism , 2000 .

[26]  K. Kratz,et al.  Are highly siderophile elements PGE, Re and Au fractionated in the upper mantle of the earth? New results on peridotites from Zabargad , 2000 .

[27]  W. Griffin,et al.  Genesis of Young Lithospheric Mantle in Southeastern China: an LAM–ICPMS Trace Element Study , 2000 .

[28]  F. Chalot-Prat,et al.  Immiscibility between calciocarbonatitic and silicate melts and related wall rock reactions in the upper mantle: a natural case study from Romanian mantle xenoliths , 1999 .

[29]  R. Vannucci,et al.  The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism , 1999 .

[30]  S. Mertzman,et al.  Water–rock interactions, orthopyroxene growth, and Si-enrichment in the mantle: evidence in xenoliths from the Colorado Plateau, southwestern United States , 1999 .

[31]  D. Ionov,et al.  Feldspar–Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle , 1999 .

[32]  T. Berza,et al.  Upper Cretaceous Magmatic Series and Associated Mineralisation in the Carpathian – Balkan Orogen , 1998 .

[33]  E. Neumann,et al.  The Origin of Highly Silicic Glass in Mantle Xenoliths from the Canary Islands , 1997 .

[34]  Z. Pécskay,et al.  Magmatism and metallogeny of the Ridanj-Krepoljin belt (eastern Serbia) and their correlation with northern and eastern analogues , 1997 .

[35]  S. Vlad Calcic skarns and transversal zoning in the Banat mountains, Romania: indicators of an Andean-type setting , 1997 .

[36]  S. Jackson,et al.  A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials , 1997 .

[37]  D. Smith,et al.  Genesis and evolution of low-Al orthopyroxene in spinel peridotite xenoliths, Grand Canyon field, Arizona, USA , 1997 .

[38]  D. Green,et al.  Glasses in mantle xenoliths from western Victoria, Australia, and their relevance to mantle processes , 1997 .

[39]  S. Eggins,et al.  A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation , 1997 .

[40]  S. O’Reilly,et al.  Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace-element residence , 1996 .

[41]  A. Sobolev,et al.  Metasomatism associated with subduction-related, volatile-rich silicate melt in the upper mantle beneath the Nograd-Gomor volcanic field, northern Hungary/southern Slovakia; evidence from silicate melt inclusions , 1996 .

[42]  W. Griffin,et al.  A xenolith-derived geotherm and the crust-mantle boundary at Qilin, southeastern China , 1996 .

[43]  J. Bédard,et al.  Interactions between melt and upper-mantle peridotites in the North Arm Mountain massif, Bay of Islands ophiolite, Newfoundland, Canada: Implications for the genesis of boninitic and related magmas☆ , 1996 .

[44]  D. Draper,et al.  Constraints on the origin of the oxidation state of mantle overlying subduction zones: An example from Simcoe, Washington, USA , 1996 .

[45]  I. Ertan,et al.  Metasomatism of Cascades subarc mantle: Evidence from a rare phlogopite orthopyroxenite xenolith , 1996 .

[46]  B. Harte,et al.  Determination of partition coefficients between apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: Implications for wet melting of the lithospheric mantle , 1996 .

[47]  P. Kelemen,et al.  Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels , 1995, Nature.

[48]  W. McDonough,et al.  The composition of the Earth , 1995 .

[49]  A. Hofmann,et al.  Metasomatism-induced Melting in Mantle Xenoliths from Mongolia , 1994 .

[50]  W. LeMasurier,et al.  Tectonic controls on the geochemical composition of Cenozoic, mafic alkaline volcanic rocks from West Antarctica , 1994 .

[51]  E. M. Cameron,et al.  Carbonated, alkaline hybridizing melts from a sub-arc environment: mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. , 1994 .

[52]  B. Wood,et al.  The partitioning of Fe and Mg between olivine and carbonate and the stability of carbonate under mantle conditions , 1993 .

[53]  K. Hirose,et al.  Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond , 1993 .

[54]  J. Joron,et al.  Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths , 1992, Nature.

[55]  T. Grove,et al.  Primary magmas of mid‐ocean ridge basalts 1. Experiments and methods , 1992 .

[56]  T. Grove,et al.  Primary magmas of mid-ocean ridge basalts 2. Applications , 1992 .

[57]  C. Stowe Evolution of chromium ore fields , 1987 .

[58]  C. Hawkesworth,et al.  Continental Basalts and Mantle Xenoliths , 1983 .

[59]  F. Frey,et al.  Geochemical characteristics of boninite series volcanics: implications for their source , 1982 .

[60]  S. Morse Kiglapait Mineralogy II: Fe-Ti Oxide Minerals and the Activities of Oxygen and Silica , 1980 .

[61]  D. Eggler,et al.  The origins of potassic magmas; 2, Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO 4 -MgO-SiO 2 -H 2 O-CO 2 at high pressures and high temperatures , 1980 .

[62]  M. Prinz,et al.  Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis , 1978 .

[63]  A. Streckeisen Plutonic rock : Classification and nomenclature recommended by the IUGS Subcommission on the Systematics of Igneous Rocks , 1973 .