Optical lattice clocks and quantum metrology

The 'magic wavelength' protocol has made it possible to design atomic clocks based on well-engineered perturbations. Such 'optical lattice clocks' will allow extremely high stability using a large number of atoms and fractional uncertainties of ∼10−18 by sharing particular 'magic' wavelengths. This Review covers the experimental realizations of such clocks, the optimal design of optical lattices and recent demonstrations of improved stability for large numbers of atoms. Possible impacts and future applications of optical lattice clocks are also discussed, such as testing the fundamental laws of physics and developing relativistic geodesy.

[1]  M. Kuwata-Gonokami,et al.  Optimal Design of Dipole Potentials for E-cient Loading of Sr Atoms , 1999 .

[2]  D. W. Allan,et al.  Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision Clocks and Oscillators , 1987, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[3]  M. Takamoto,et al.  Prospects for optical clocks with a blue-detuned lattice. , 2009, Physical review letters.

[4]  Chu,et al.  Experimental observation of optically trapped atoms. , 1986, Physical review letters.

[5]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[6]  Sandberg,et al.  Shelved optical electron amplifier: Observation of quantum jumps. , 1986, Physical review letters.

[7]  Stephan Schiller,et al.  CRYOGENIC OPTICAL RESONATORS : A NEW TOOL FOR LASER FREQUENCY STABILIZATION AT THE 1 HZ LEVEL , 1997 .

[8]  Courtois,et al.  Dynamics and spatial order of cold cesium atoms in a periodic optical potential. , 1992, Physical review letters.

[9]  Louis Essen,et al.  The caesium resonator as a standard of frequency and time , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[10]  Moore,et al.  Quantum projection noise: Population fluctuations in two-level systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[11]  C. Clark,et al.  Black-body radiation shifts and theoretical contributions to atomic clock research , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  W. Ketterle,et al.  Radio-Frequency Spectroscopy of Ultracold Fermions , 2003, Science.

[13]  J. Lodewyck,et al.  Nondestructive measurement of the transition probability in a Sr optical lattice clock , 2009, 0902.2905.

[14]  H. Katori,et al.  Magic wavelength to make optical lattice clocks insensitive to atomic motion. , 2009, Physical review letters.

[15]  C W Oates,et al.  Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks. , 2006, Physical review letters.

[16]  M. Takamoto,et al.  Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice. , 2003, Physical review letters.

[17]  T. Hänsch Nobel Lecture: Passion for precision* , 2006 .

[18]  John L. Hall,et al.  Defining and Measuring Optical Frequencies , 2006 .

[19]  M. Takamoto,et al.  Three-dimensional optical lattice clock with bosonic {sup 88}Sr atoms , 2010 .

[20]  Michito Imae,et al.  Improved Frequency Measurement of a One-Dimensional Optical Lattice Clock with a Spin-Polarized Fermionic 87Sr Isotope , 2006 .

[21]  Hidetoshi Katori,et al.  Frequency comparison of optical lattice clocks beyond the Dick limit , 2011 .

[22]  David J. Wineland,et al.  Laser cooling of atoms , 1979 .

[23]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[24]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[25]  Jun Ye,et al.  Prospects for a millihertz-linewidth laser. , 2009, Physical review letters.

[26]  Jun Ye,et al.  The absolute frequency of the 87Sr optical clock transition , 2008, 0804.4509.

[27]  H. Inaba,et al.  Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer. , 2008, Optics letters.

[28]  Theodor W. Hänsch,et al.  Absolute Optical Frequency Measurement of the Cesium D 1 Line with a Mode-Locked Laser , 1999 .

[29]  Hidetoshi Katori,et al.  Spectroscopy of Strontium Atoms in the Lamb-Dicke Confinement , 2002 .

[30]  C. cohen-tannoudji Manipulating atoms with photons , 1998 .

[31]  André Clairon,et al.  The Dick effect for an optical frequency standard , 2003 .

[32]  Jun Ye,et al.  Optical interferometers with reduced sensitivity to thermal noise , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[33]  Feng-Lei Hong,et al.  One-Dimensional Optical Lattice Clock with a Fermionic 171Yb Isotope , 2009, 0906.3664.

[34]  Jun Ye,et al.  Systematic study of the 87Srclock transition in an optical lattice. , 2005, Physical review letters.

[35]  Claire Cramer,et al.  Optical clocks based on ultranarrow three-photon resonances in alkaline Earth atoms. , 2005, Physical review letters.

[36]  Jun Ye,et al.  Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps , 2008, Science.

[37]  M. Takamoto,et al.  Coherence of Spin-Polarized Fermions Interacting with a Clock Laser in a Stark-Shift-Free Optical Lattice(Atomic and molecular physics) , 2009, 0901.1526.

[38]  T Zelevinsky,et al.  New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. , 2008, Physical review letters.

[39]  C W Oates,et al.  Spin-1/2 optical lattice clock. , 2009, Physical review letters.

[40]  Rodolphe Le Targat,et al.  Accuracy evaluation of an optical lattice clock with bosonic atoms. , 2007, Optics letters.

[41]  Jingbiao Chen,et al.  Optical clock with millihertz linewidth based on a phase-matching effect. , 2007, Physical review letters.

[42]  S. Dawkins,et al.  Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury. , 2008, Physical review letters.

[43]  Jon H. Shirley,et al.  NIST-F1: recent improvements and accuracy evaluations , 2005 .

[44]  R. Holzwarth,et al.  Einstein Gravity Explorer–a medium-class fundamental physics mission , 2009 .

[45]  S. Diddams,et al.  Standards of Time and Frequency at the Outset of the 21st Century , 2004, Science.

[46]  M. Takamoto,et al.  Trapping of neutral mercury atoms and prospects for optical lattice clocks. , 2007, Physical review letters.

[47]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[48]  A. Bauch,et al.  New experimental limit on the validity of local position invariance , 2002 .

[49]  R. Dicke The effect of collisions upon the Doppler width of spectral lines , 1953 .

[50]  J. Flowers The Route to Atomic and Quantum Standards , 2004, Science.

[51]  M. Takamoto,et al.  An optical lattice clock , 2005, Nature.

[52]  V D Ovsiannikov,et al.  Optical lattice polarization effects on hyperpolarizability of atomic clock transitions. , 2006, Physical review letters.

[53]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[54]  P. Lemonde,et al.  Clock transition for a future optical frequency standard with trapped atoms , 2003 .

[55]  Tomoya Akatsuka,et al.  Optical lattice clocks with non-interacting bosons and fermions , 2008, 2008 IEEE International Frequency Control Symposium.

[56]  B Lipphardt,et al.  Limit on the present temporal variation of the fine structure constant. , 2004, Physical review letters.

[57]  H J Kimble,et al.  State-insensitive cooling and trapping of single atoms in an optical cavity. , 2003, Physical review letters.

[58]  Rodolphe Le Targat,et al.  Hyperpolarizability effects in a Sr optical lattice clock. , 2006, Physical review letters.

[59]  Jun Ye,et al.  High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr. , 2004, Physical review letters.

[60]  E. Peik,et al.  Stray-field-induced quadrupole shift and absolute frequency of the 688-THz {sup 171}Yb{sup +} single-ion optical frequency standard , 2009 .

[61]  Jean-Philippe Uzan,et al.  The fundamental constants and their variation: observational and theoretical status , 2003 .

[62]  Tony Jones Splitting The Second: The Story of Atomic Time , 2000 .

[63]  Phillips,et al.  Localization of atoms in a three-dimensional standing wave. , 1990, Physical review letters.

[64]  Haensch,et al.  Two-dimesional atomic crystal bound by light. , 1993, Physical review letters.

[65]  P. Lemonde,et al.  Optical lattice clock with atoms confined in a shallow trap (8 pages) , 2005 .

[66]  Flavio C. Cruz,et al.  VISIBLE LASERS WITH SUBHERTZ LINEWIDTHS , 1999 .

[67]  John L. Hall,et al.  Nobel Lecture: Defining and measuring optical frequencies , 2006 .

[68]  P. Lemonde Optical lattice clocks , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[69]  Fritz Riehle,et al.  Wavelength-dependent ac Stark shift of the S 0 1 ‐ P 1 3 transition at 657 nm in Ca , 2004 .

[70]  N. Newbury,et al.  Coherent transfer of an optical carrier over 251 km. , 2007, Optics letters.

[71]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[72]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[73]  J. Dalibard,et al.  Quantization of Atomic Motion in Optical Molasses , 1991 .

[74]  A. Bjerhammar,et al.  On a relativistic geodesy , 1985 .

[75]  V. Yudin,et al.  Magic-wave-induced $^1S_0-^3P_0$ transition in even isotopes of alkaline-earth-like atoms , 2007, physics/0701134.

[76]  E. Riis,et al.  Laser cooling and trapping of neutral atoms , 1997 .

[77]  A. Clairon,et al.  Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[78]  Jun Ye,et al.  Probing Interactions Between Ultracold Fermions , 2009, Science.

[79]  P. Gill Optical frequency standards , 2005 .

[80]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[81]  M. Takamoto,et al.  Ultrastable optical clock with neutral atoms in an engineered light shift trap , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[82]  Verhaar,et al.  Eliminating cold-collision frequency shifts. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[83]  H. Dehmelt,et al.  Monoion oscillator as potential ultimate laser frequency standard , 1982, IEEE Transactions on Instrumentation and Measurement.

[84]  N Ashby,et al.  Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance. , 2007, Physical review letters.

[85]  P. Rosenbusch,et al.  An optical lattice clock with spin-polarized 87Sr atoms , 2007, 0710.0086.

[86]  André Clairon,et al.  Quantum projection noise in an atomic fountain: a high stability cesium frequency standard , 1999 .

[87]  Rodolphe Le Targat,et al.  Accurate optical lattice clock with 87Sr atoms. , 2006, Physical review letters.

[88]  P. Rosenbusch,et al.  Cold atom clocks and applications , 2005, physics/0502117.

[89]  C W Oates,et al.  Optical lattice induced light shifts in an yb atomic clock. , 2008, Physical review letters.

[90]  A. Ludlow,et al.  Making optical atomic clocks more stable with 10-16-level laser stabilization , 2011, 1101.1351.

[91]  F. Riehle,et al.  Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons. , 2009, Physical review letters.

[92]  J. Gordon,et al.  Motion of atoms in a radiation trap , 1980 .

[93]  Alan A. Madej,et al.  A laser frequency lock referenced to a single trapped ion , 1998 .

[94]  T. Hänsch,et al.  Cooling of gases by laser radiation , 1975 .

[95]  Wayne M. Itano,et al.  External-Field Shifts of the 199Hg+ Optical Frequency Standard , 2000, Journal of research of the National Institute of Standards and Technology.

[96]  M. Takamoto,et al.  Polarisation and dispersion properties of light shifts in ultrastable optical frequency standards , 2006 .

[97]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[98]  C. cohen-tannoudji,et al.  Nobel Lecture: Manipulating atoms with photons , 1998 .

[99]  V. Dzuba,et al.  Relativistic effects in two valence-electron atoms and ions and the search for variation of the fine-structure constant , 2004, physics/0404042.

[100]  Andrew Szentgyorgyi,et al.  A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1 , 2008, Nature.

[101]  S. Bize,et al.  Interrogation oscillator noise rejection in the comparison of atomic fountains , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[102]  Sergey G. Porsev,et al.  Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks , 2006 .