Statistical selection of relevant subspace projections for outlier ranking
暂无分享,去创建一个
[1] M. Stephens. Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics without Extensive Tables , 1970 .
[2] Hans-Peter Kriegel,et al. Angle-based outlier detection in high-dimensional data , 2008, KDD.
[3] W. R. Buckland,et al. Outliers in Statistical Data , 1979 .
[4] Raymond T. Ng,et al. Distance-based outliers: algorithms and applications , 2000, The VLDB Journal.
[5] Emmanuel Müller,et al. Adaptive outlierness for subspace outlier ranking , 2010, CIKM '10.
[6] Hans-Peter Kriegel,et al. LOF: identifying density-based local outliers , 2000, SIGMOD '00.
[7] Hans-Peter Kriegel,et al. Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data , 2009, PAKDD.
[8] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[9] I. Jolliffe. Principal Component Analysis , 2002 .
[10] Vipin Kumar,et al. Feature bagging for outlier detection , 2005, KDD '05.
[11] Christos Faloutsos,et al. LOCI: fast outlier detection using the local correlation integral , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).
[12] Huan Liu,et al. Subspace clustering for high dimensional data: a review , 2004, SKDD.
[13] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[14] C. Spearman. The proof and measurement of association between two things. , 2015, International journal of epidemiology.
[15] Ira Assent,et al. Relevant Subspace Clustering: Mining the Most Interesting Non-redundant Concepts in High Dimensional Data , 2009, 2009 Ninth IEEE International Conference on Data Mining.
[16] Hans-Peter Kriegel,et al. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.
[17] Zengyou He,et al. Discovering cluster-based local outliers , 2003, Pattern Recognit. Lett..
[18] Ira Assent,et al. OutRank: ranking outliers in high dimensional data , 2008, 2008 IEEE 24th International Conference on Data Engineering Workshop.
[19] Ira Assent,et al. Evaluating Clustering in Subspace Projections of High Dimensional Data , 2009, Proc. VLDB Endow..
[20] Philip S. Yu,et al. Outlier detection for high dimensional data , 2001, SIGMOD '01.
[21] Emmanuel Müller,et al. SOREX: Subspace Outlier Ranking Exploration Toolkit , 2010, ECML/PKDD.
[22] Ira Assent,et al. DUSC: Dimensionality Unbiased Subspace Clustering , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).
[23] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[24] Zhi-Hua Zhou,et al. Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[25] Jörg Sander,et al. Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering , 2008, KDD.
[26] Hans-Peter Kriegel,et al. Density-Connected Subspace Clustering for High-Dimensional Data , 2004, SDM.