Function Value Recovery and Its Application in Eigenvalue Problems

Function value recovery techniques for linear finite elements are discussed. Using the recovered function and its gradient, we are able to enhance the eigenvalue approximation and increase its convergence rate to $h^{2\alpha}$, where $\alpha > 1$ is the superconvergence rate of the recovered gradient. This is true in both symmetric and nonsymmetric eigenvalue problems.

[1]  R. Rannacher,et al.  Asymptotic error expansion and Richardson extranpolation for linear finite elements , 1986 .

[2]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[3]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[4]  Nils-Erik Wiberg,et al.  Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .

[5]  F. Chatelin The Spectral Approximation of Linear Operators with Applications to the Computation of Eigenelements of Differential and Integral Operators , 1981 .

[6]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[7]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[8]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[9]  K. Kolman,et al.  A Two-Level Method for Nonsymmetric Eigenvalue Problems , 2005 .

[10]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[11]  Zhimin Zhang,et al.  Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes? , 2007, SIAM J. Numer. Anal..

[12]  Ahmed Naga,et al.  THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .

[13]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[14]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[15]  Bo Li,et al.  Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .

[16]  Zhimin Zhang,et al.  Enhancing Eigenvalue Approximation by Gradient Recovery , 2006, SIAM J. Sci. Comput..

[17]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[18]  Luka Grubisic,et al.  On estimators for eigenvalue/eigenvector approximations , 2009, Math. Comput..

[19]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[20]  Tong Zhang,et al.  Two-Sided Arnoldi and Nonsymmetric Lanczos Algorithms , 2002, SIAM J. Matrix Anal. Appl..

[21]  Jeffrey S. Ovall F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Function, Gradient and Hessian Recovery Using Quadratic Edge-bump Functions Function, Gradient and Hessian Recovery Using Quadratic Edge-bump Functions * , 2022 .

[22]  N. Wiberg,et al.  A posteriori error estimate by element patch post-processing, adaptive analysis in energy and L2 norms , 1994 .