Nonbinary Stabilizer Codes Over Finite Fields
暂无分享,去创建一个
Santosh Kumar | Pradeep Kiran Sarvepalli | Andreas Klappenecker | Avanti Ketkar | A. Klappenecker | P. Sarvepalli | Santosh Kumar | Avanti Ketkar
[1] D. Gottesman. Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, quant-ph/9802007.
[2] Howard Barnum,et al. Quantum message authentication codes , 2001, quant-ph/0103123.
[3] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[4] Hao Chen. Some good quantum error-correcting codes from algebraic-Geometric codes , 2001, IEEE Trans. Inf. Theory.
[5] Richard Cleve. Quantum stabilizer codes and classical linear codes , 1997 .
[6] P. Delsarte. Bounds for unrestricted codes, by linear programming , 1972 .
[7] G. Lachaud,et al. The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.
[8] Martin Rötteler,et al. On quantum MDS codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[9] Keqin Feng,et al. Quantum codes [[6, 2, 3]]p and [[7, 3, 3]]p (p >= 3) exist , 2002, IEEE Trans. Inf. Theory.
[10] W. Cary Huffman,et al. Fundamentals of Error-Correcting Codes , 1975 .
[11] Michael S. Postol. A Proposed Quantum Low Density Parity Check Code , 2001, quant-ph/0108131.
[12] Cunsheng Ding,et al. Elementary 2-group character codes , 2000, IEEE Trans. Inf. Theory.
[13] Henning Stichtenoth,et al. Generalized Hamming weights of trace codes , 1994, IEEE Trans. Inf. Theory.
[14] Pradeep Kiran Sarvepalli,et al. Remarkable Degenerate Quantum Stabilizer Codes Derived from Duadic Codes , 2006, 2006 IEEE International Symposium on Information Theory.
[15] Toyokazu Hiramatsu,et al. Coding Theory and Number Theory , 2003 .
[16] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[17] Ruihu Li,et al. Binary construction of quantum codes of minimum distance three and four , 2004, IEEE Transactions on Information Theory.
[18] R. Cleve,et al. Efficient computations of encodings for quantum error correction , 1996, quant-ph/9607030.
[19] R. Matsumoto,et al. Constructing Quantum Error-Correcting Codes for pm-State System from Classical Error-Correcting Codes , 1999, quant-ph/9911011.
[20] Xin-Wen Wu,et al. List decoding of q-ary Reed-Muller codes , 2004, IEEE Transactions on Information Theory.
[21] Oscar Moreno,et al. The MacWilliams-Sloane conjecture on the tightness of the Carlitz-Uchiyama bound and the weights of duals of BCH codes , 1994, IEEE Trans. Inf. Theory.
[22] Steane,et al. Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[23] William J. Martin,et al. A Physics Free Introduction To Quantum Error Correcting Codes , 2007 .
[24] Andreas Klappenecker,et al. Beyond stabilizer codes I: Nice error bases , 2002, IEEE Trans. Inf. Theory.
[25] Lin Xiaoyan. Quantum cyclic and constacyclic codes , 2004, IEEE Transactions on Information Theory.
[26] I. Fuss,et al. Quantum Reed-Muller codes , 1997, quant-ph/9703045.
[27] H. Chau. Five quantum register error correction code for higher spin systems , 1997, quant-ph/9702033.
[28] Ekert,et al. Quantum Error Correction for Communication. , 1996 .
[29] T. Beth,et al. Codes for the quantum erasure channel , 1996, quant-ph/9610042.
[30] Pradeep Kiran Sarvepalli,et al. Nonbinary quantum Reed-Muller codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[31] C. Macchiavello,et al. Error Correction in Quantum Communication , 1996, quant-ph/9602022.
[32] G. vander Geer,et al. Generalized Hamming Weights of Melas Codes and Dual Melas Codes , 1994, SIAM J. Discret. Math..
[33] Gérard D. Cohen,et al. On binary constructions of quantum codes , 1999, IEEE Trans. Inf. Theory.
[34] David J. C. MacKay,et al. Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.
[35] A. Klappenecker,et al. On the Dimension, Minimum Distance, and Duals of Primitive BCH Codes , 2005 .
[36] S. Litsyn,et al. Asymptotically Good Quantum Codes , 2000, quant-ph/0006061.
[37] Eric M. Rains. Quantum Weight Enumerators , 1998, IEEE Trans. Inf. Theory.
[38] Simon Litsyn,et al. Quantum error detection I: Statement of the problem , 1999, IEEE Trans. Inf. Theory.
[39] E. Knill. Group representations, error bases and quantum codes , 1996, quant-ph/9608049.
[40] Steane,et al. Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.
[41] 植松 友彦,et al. Constructing Quantum Error-Correcting Codes for p^m-State Systems from Classical Error-Correcting Codes , 2000 .
[42] Oscar Moreno,et al. An Improved Serre Bound for Elementary Abelian Extensions of Fq(x) and the Generalized Hamming Weights of Duals of BCH Codes , 1998, IEEE Trans. Inf. Theory.
[43] Daniel Gottesman. Pasting Quantum Codes , 1996 .
[44] K. Parthasarathy,et al. A Family of Quantum Stabilizer Codes Based on the Weyl Commutation Relations over a Finite Field , 2002, quant-ph/0206174.
[45] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[46] Raymond Laflamme,et al. Quantum Analog of the MacWilliams Identities for Classical Coding Theory , 1997 .
[47] Jon-Lark Kim. New Quantum Error-Correcting Codes from Hermitian Self-Orthogonal Codes over GF(4) , 2002 .
[48] A. Steane. Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[49] Zhi Ma,et al. A finite Gilbert-Varshamov bound for pure stabilizer quantum codes , 2004, IEEE Transactions on Information Theory.
[50] Peter Májek,et al. Quantum Error Correcting Codes , 2005 .
[51] A. Barg,et al. Strengthening the Gilbert–Varshamov bound , 2000 .
[52] Jon-Lark Kim,et al. Nonbinary quantum error-correcting codes from algebraic curves , 2008, Discret. Math..
[53] Dorit Aharonov,et al. Fault-tolerant quantum computation with constant error , 1997, STOC '97.
[54] Abraham Lempel,et al. Factorization of Symmetric Matrices and Trace-Orthogonal Bases in Finite Fields , 1980, SIAM J. Comput..
[55] T. Beth,et al. Quantum BCH Codes , 1999, quant-ph/9910060.
[56] Eric M. Rains. Quantum shadow enumerators , 1999, IEEE Trans. Inf. Theory.
[57] Daniel Gottesman. Quantum Error Correction and Fault-Tolerance , 2005 .
[58] Vladimir I. Levenshtein,et al. Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces , 1995, IEEE Trans. Inf. Theory.
[59] Markus Grassl,et al. The Quantum Hamming and Hexacodes , 1998 .
[60] Eric M. Rains. Polynomial invariants of quantum codes , 2000, IEEE Trans. Inf. Theory.
[61] Adam D. Smith,et al. Authentication of quantum messages , 2001, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[62] Dirk Schlingemann,et al. Quantum error-correcting codes associated with graphs , 2000, ArXiv.
[63] Martin Rötteler,et al. Efficient Quantum Circuits for Non-qubit Quantum Error-correcting Codes , 2002 .
[64] AMSShort Courses,et al. Quantum Computation : The Grand Mathematical Challenge for the Twenty-First Century and the Millennium , 1999 .
[65] Pradeep Kiran Sarvepalli,et al. Primitive Quantum BCH Codes over Finite Fields , 2006, 2006 IEEE International Symposium on Information Theory.
[66] T. Beth,et al. Cyclic quantum error–correcting codes and quantum shift registers , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[67] Emil Popescu,et al. On Galois Connexions , 1994 .
[68] Andrew M. Steane. Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.
[69] Markus Grassl,et al. Quantum Reed-Solomon Codes , 1999, AAECC.
[70] Gottesman. Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[71] Hao Chen,et al. Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound , 2001, IEEE Trans. Inf. Theory.
[72] Robert J. McEliece,et al. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.
[73] Matthew G. Parker,et al. On the classification of all self-dual additive codes over GF(4) of length up to 12 , 2005, J. Comb. Theory, Ser. A.
[74] R. Schoof,et al. Weight formulas for ternary Melas codes , 1992 .
[75] Axthonv G. Oettinger,et al. IEEE Transactions on Information Theory , 1998 .
[76] Farrokh Vatan,et al. Spatially correlated qubit errors and burst-correcting quantum codes , 1997, IEEE Trans. Inf. Theory.
[77] Eric M. Rains. Quantum Codes of Minimum Distance Two , 1999, IEEE Trans. Inf. Theory.
[78] Jennifer D. Key,et al. Designs and their codes , 1992, Cambridge tracts in mathematics.
[79] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[80] Eric M. Rains. Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.
[81] R. Schoof. Families of curves and weight distributions of codes , 1995, math/9504222.
[82] T. Beth,et al. On optimal quantum codes , 2003, quant-ph/0312164.
[83] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[84] J. Macwilliams. A theorem on the distribution of weights in a systematic code , 1963 .
[85] Eric M. Rains. Monotonicity of the quantum linear programming bound , 1999, IEEE Trans. Inf. Theory.
[86] L. Grove,et al. Classical Groups and Geometric Algebra , 2001 .
[87] Simon Litsyn,et al. Upper Bounds on the Size of Quantum Codes , 1999, IEEE Trans. Inf. Theory.
[88] Dirk Schlingemann. Stabilizer codes can be realized as graph codes , 2002, Quantum Inf. Comput..
[89] E. F. Assmus. POLYNOMIAL CODES AND FINITE GEOMETRIES , 2003 .
[90] Simon Litsyn,et al. Quantum error detection II: Bounds , 1999, IEEE Trans. Inf. Theory.
[91] A. Calderbank,et al. Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.
[92] Ryutaroh Matsumoto,et al. Improvement of Ashikhmin-Litsyn-Tsfasman bound for quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.
[93] J. Tillich,et al. Constructions and performance of classes of quantum LDPC codes , 2005, quant-ph/0502086.
[94] D. Gottesman. An Introduction to Quantum Error Correction , 2000, quant-ph/0004072.
[95] Raymond Laflamme,et al. A Theory of Quantum Error-Correcting Codes , 1996 .
[96] Y. Edel,et al. Quantum twisted codes , 2000 .
[97] Andreas Klappenecker,et al. Beyond stabilizer codes II: Clifford codes , 2002, IEEE Trans. Inf. Theory.
[98] Andrew Thangaraj,et al. Quantum codes from cyclic codes over GF(4m) , 2001, IEEE Trans. Inf. Theory.
[99] E. Knill. Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.
[100] E. Knill,et al. Theory of quantum error-correcting codes , 1997 .
[101] Anton Betten,et al. Codierungstheorie : Konstruktion und Anwendung linearer Codes , 1998 .
[102] Tadao Kasami,et al. New generalizations of the Reed-Muller codes-I: Primitive codes , 1968, IEEE Trans. Inf. Theory.
[103] Alexei E. Ashikhmin,et al. Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.
[104] Michael H. Freedman,et al. Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..
[105] Daniel Gottesman. Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, QCQC.
[106] A. Kitaev. Quantum computations: algorithms and error correction , 1997 .
[107] H. F. Chau. Correcting quantum errors in higher spin systems , 1997 .
[108] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[109] Jon-Lark Kim,et al. Designs in Additive Codes over GF(4) , 2003, Des. Codes Cryptogr..