Nonbinary Stabilizer Codes Over Finite Fields

One formidable difficulty in quantum communication and computation is to protect information-carrying quantum states against undesired interactions with the environment. To address this difficulty, many good quantum error-correcting codes have been derived as binary stabilizer codes. Fault-tolerant quantum computation prompted the study of nonbinary quantum codes, but the theory of such codes is not as advanced as that of binary quantum codes. This paper describes the basic theory of stabilizer codes over finite fields. The relation between stabilizer codes and general quantum codes is clarified by introducing a Galois theory for these objects. A characterization of nonbinary stabilizer codes over Fq in terms of classical codes over Fq 2 is provided that generalizes the well-known notion of additive codes over F4 of the binary case. This paper also derives lower and upper bounds on the minimum distance of stabilizer codes, gives several code constructions, and derives numerous families of stabilizer codes, including quantum Hamming codes, quadratic residue codes, quantum Melas codes, quantum Bose-Chaudhuri-Hocquenghem (BCH) codes, and quantum character codes. The puncturing theory by Rains is generalized to additive codes that are not necessarily pure. Bounds on the maximal length of maximum distance separable stabilizer codes are given. A discussion of open problems concludes this paper

[1]  D. Gottesman Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, quant-ph/9802007.

[2]  Howard Barnum,et al.  Quantum message authentication codes , 2001, quant-ph/0103123.

[3]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[4]  Hao Chen Some good quantum error-correcting codes from algebraic-Geometric codes , 2001, IEEE Trans. Inf. Theory.

[5]  Richard Cleve Quantum stabilizer codes and classical linear codes , 1997 .

[6]  P. Delsarte Bounds for unrestricted codes, by linear programming , 1972 .

[7]  G. Lachaud,et al.  The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.

[8]  Martin Rötteler,et al.  On quantum MDS codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[9]  Keqin Feng,et al.  Quantum codes [[6, 2, 3]]p and [[7, 3, 3]]p (p >= 3) exist , 2002, IEEE Trans. Inf. Theory.

[10]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[11]  Michael S. Postol A Proposed Quantum Low Density Parity Check Code , 2001, quant-ph/0108131.

[12]  Cunsheng Ding,et al.  Elementary 2-group character codes , 2000, IEEE Trans. Inf. Theory.

[13]  Henning Stichtenoth,et al.  Generalized Hamming weights of trace codes , 1994, IEEE Trans. Inf. Theory.

[14]  Pradeep Kiran Sarvepalli,et al.  Remarkable Degenerate Quantum Stabilizer Codes Derived from Duadic Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[15]  Toyokazu Hiramatsu,et al.  Coding Theory and Number Theory , 2003 .

[16]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  Ruihu Li,et al.  Binary construction of quantum codes of minimum distance three and four , 2004, IEEE Transactions on Information Theory.

[18]  R. Cleve,et al.  Efficient computations of encodings for quantum error correction , 1996, quant-ph/9607030.

[19]  R. Matsumoto,et al.  Constructing Quantum Error-Correcting Codes for pm-State System from Classical Error-Correcting Codes , 1999, quant-ph/9911011.

[20]  Xin-Wen Wu,et al.  List decoding of q-ary Reed-Muller codes , 2004, IEEE Transactions on Information Theory.

[21]  Oscar Moreno,et al.  The MacWilliams-Sloane conjecture on the tightness of the Carlitz-Uchiyama bound and the weights of duals of BCH codes , 1994, IEEE Trans. Inf. Theory.

[22]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  William J. Martin,et al.  A Physics Free Introduction To Quantum Error Correcting Codes , 2007 .

[24]  Andreas Klappenecker,et al.  Beyond stabilizer codes I: Nice error bases , 2002, IEEE Trans. Inf. Theory.

[25]  Lin Xiaoyan Quantum cyclic and constacyclic codes , 2004, IEEE Transactions on Information Theory.

[26]  I. Fuss,et al.  Quantum Reed-Muller codes , 1997, quant-ph/9703045.

[27]  H. Chau Five quantum register error correction code for higher spin systems , 1997, quant-ph/9702033.

[28]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[29]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[30]  Pradeep Kiran Sarvepalli,et al.  Nonbinary quantum Reed-Muller codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[31]  C. Macchiavello,et al.  Error Correction in Quantum Communication , 1996, quant-ph/9602022.

[32]  G. vander Geer,et al.  Generalized Hamming Weights of Melas Codes and Dual Melas Codes , 1994, SIAM J. Discret. Math..

[33]  Gérard D. Cohen,et al.  On binary constructions of quantum codes , 1999, IEEE Trans. Inf. Theory.

[34]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[35]  A. Klappenecker,et al.  On the Dimension, Minimum Distance, and Duals of Primitive BCH Codes , 2005 .

[36]  S. Litsyn,et al.  Asymptotically Good Quantum Codes , 2000, quant-ph/0006061.

[37]  Eric M. Rains Quantum Weight Enumerators , 1998, IEEE Trans. Inf. Theory.

[38]  Simon Litsyn,et al.  Quantum error detection I: Statement of the problem , 1999, IEEE Trans. Inf. Theory.

[39]  E. Knill Group representations, error bases and quantum codes , 1996, quant-ph/9608049.

[40]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[41]  植松 友彦,et al.  Constructing Quantum Error-Correcting Codes for p^m-State Systems from Classical Error-Correcting Codes , 2000 .

[42]  Oscar Moreno,et al.  An Improved Serre Bound for Elementary Abelian Extensions of Fq(x) and the Generalized Hamming Weights of Duals of BCH Codes , 1998, IEEE Trans. Inf. Theory.

[43]  Daniel Gottesman Pasting Quantum Codes , 1996 .

[44]  K. Parthasarathy,et al.  A Family of Quantum Stabilizer Codes Based on the Weyl Commutation Relations over a Finite Field , 2002, quant-ph/0206174.

[45]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[46]  Raymond Laflamme,et al.  Quantum Analog of the MacWilliams Identities for Classical Coding Theory , 1997 .

[47]  Jon-Lark Kim New Quantum Error-Correcting Codes from Hermitian Self-Orthogonal Codes over GF(4) , 2002 .

[48]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  Zhi Ma,et al.  A finite Gilbert-Varshamov bound for pure stabilizer quantum codes , 2004, IEEE Transactions on Information Theory.

[50]  Peter Májek,et al.  Quantum Error Correcting Codes , 2005 .

[51]  A. Barg,et al.  Strengthening the Gilbert–Varshamov bound , 2000 .

[52]  Jon-Lark Kim,et al.  Nonbinary quantum error-correcting codes from algebraic curves , 2008, Discret. Math..

[53]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[54]  Abraham Lempel,et al.  Factorization of Symmetric Matrices and Trace-Orthogonal Bases in Finite Fields , 1980, SIAM J. Comput..

[55]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[56]  Eric M. Rains Quantum shadow enumerators , 1999, IEEE Trans. Inf. Theory.

[57]  Daniel Gottesman Quantum Error Correction and Fault-Tolerance , 2005 .

[58]  Vladimir I. Levenshtein,et al.  Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces , 1995, IEEE Trans. Inf. Theory.

[59]  Markus Grassl,et al.  The Quantum Hamming and Hexacodes , 1998 .

[60]  Eric M. Rains Polynomial invariants of quantum codes , 2000, IEEE Trans. Inf. Theory.

[61]  Adam D. Smith,et al.  Authentication of quantum messages , 2001, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[62]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[63]  Martin Rötteler,et al.  Efficient Quantum Circuits for Non-qubit Quantum Error-correcting Codes , 2002 .

[64]  AMSShort Courses,et al.  Quantum Computation : The Grand Mathematical Challenge for the Twenty-First Century and the Millennium , 1999 .

[65]  Pradeep Kiran Sarvepalli,et al.  Primitive Quantum BCH Codes over Finite Fields , 2006, 2006 IEEE International Symposium on Information Theory.

[66]  T. Beth,et al.  Cyclic quantum error–correcting codes and quantum shift registers , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[67]  Emil Popescu,et al.  On Galois Connexions , 1994 .

[68]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[69]  Markus Grassl,et al.  Quantum Reed-Solomon Codes , 1999, AAECC.

[70]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[71]  Hao Chen,et al.  Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound , 2001, IEEE Trans. Inf. Theory.

[72]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[73]  Matthew G. Parker,et al.  On the classification of all self-dual additive codes over GF(4) of length up to 12 , 2005, J. Comb. Theory, Ser. A.

[74]  R. Schoof,et al.  Weight formulas for ternary Melas codes , 1992 .

[75]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[76]  Farrokh Vatan,et al.  Spatially correlated qubit errors and burst-correcting quantum codes , 1997, IEEE Trans. Inf. Theory.

[77]  Eric M. Rains Quantum Codes of Minimum Distance Two , 1999, IEEE Trans. Inf. Theory.

[78]  Jennifer D. Key,et al.  Designs and their codes , 1992, Cambridge tracts in mathematics.

[79]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[80]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[81]  R. Schoof Families of curves and weight distributions of codes , 1995, math/9504222.

[82]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[83]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[84]  J. Macwilliams A theorem on the distribution of weights in a systematic code , 1963 .

[85]  Eric M. Rains Monotonicity of the quantum linear programming bound , 1999, IEEE Trans. Inf. Theory.

[86]  L. Grove,et al.  Classical Groups and Geometric Algebra , 2001 .

[87]  Simon Litsyn,et al.  Upper Bounds on the Size of Quantum Codes , 1999, IEEE Trans. Inf. Theory.

[88]  Dirk Schlingemann Stabilizer codes can be realized as graph codes , 2002, Quantum Inf. Comput..

[89]  E. F. Assmus POLYNOMIAL CODES AND FINITE GEOMETRIES , 2003 .

[90]  Simon Litsyn,et al.  Quantum error detection II: Bounds , 1999, IEEE Trans. Inf. Theory.

[91]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[92]  Ryutaroh Matsumoto,et al.  Improvement of Ashikhmin-Litsyn-Tsfasman bound for quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[93]  J. Tillich,et al.  Constructions and performance of classes of quantum LDPC codes , 2005, quant-ph/0502086.

[94]  D. Gottesman An Introduction to Quantum Error Correction , 2000, quant-ph/0004072.

[95]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[96]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[97]  Andreas Klappenecker,et al.  Beyond stabilizer codes II: Clifford codes , 2002, IEEE Trans. Inf. Theory.

[98]  Andrew Thangaraj,et al.  Quantum codes from cyclic codes over GF(4m) , 2001, IEEE Trans. Inf. Theory.

[99]  E. Knill Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.

[100]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[101]  Anton Betten,et al.  Codierungstheorie : Konstruktion und Anwendung linearer Codes , 1998 .

[102]  Tadao Kasami,et al.  New generalizations of the Reed-Muller codes-I: Primitive codes , 1968, IEEE Trans. Inf. Theory.

[103]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[104]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[105]  Daniel Gottesman Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, QCQC.

[106]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[107]  H. F. Chau Correcting quantum errors in higher spin systems , 1997 .

[108]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[109]  Jon-Lark Kim,et al.  Designs in Additive Codes over GF(4) , 2003, Des. Codes Cryptogr..