Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice

The fermionic Hubbard model plays a fundamental role in the description of strongly correlated materials. We have realized this Hamiltonian in a repulsively interacting spin mixture of ultracold 40K atoms in a three-dimensional (3D) optical lattice. Using in situ imaging and independent control of external confinement and lattice depth, we were able to directly measure the compressibility of the quantum gas in the trap. Together with a comparison to ab initio dynamical mean field theory calculations, we show how the system evolves for increasing confinement from a compressible dilute metal over a strongly interacting Fermi liquid into a band-insulating state. For strong interactions, we find evidence for an emergent incompressible Mott insulating phase. This demonstrates the potential to model interacting condensed-matter systems using ultracold fermionic atoms.

[1]  A. Rosch,et al.  Kondo proximity effect: how does a metal penetrate into a Mott insulator? , 2008, Physical review letters.

[2]  Robert Jördens,et al.  A Mott insulator of fermionic atoms in an optical lattice , 2008, Nature.

[3]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[4]  A. Aspect,et al.  Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.

[5]  C. Tőke,et al.  Antiferromagnetic order of strongly interacting fermions in a trap: real-space dynamical mean-field analysis , 2008, 0802.3211.

[6]  R. Duine,et al.  Achieving the Néel state in an optical lattice , 2007, 0711.3425.

[7]  A. Rosch,et al.  Mott transition of fermionic atoms in a three-dimensional optical trap. , 2007, Physical review letters.

[8]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[9]  T. Pruschke,et al.  Numerical renormalization group method for quantum impurity systems , 2007, cond-mat/0701105.

[10]  F. Gerbier Boson Mott insulators at finite temperatures. , 2007, Physical review letters.

[11]  W. Phillips,et al.  Mott-insulator transition in a two-dimensional atomic Bose gas. , 2007, Physical review letters.

[12]  M. Lewenstein,et al.  Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond , 2006, cond-mat/0606771.

[13]  T. Müller,et al.  Formation of spatial shell structure in the superfluid to Mott insulator transition. , 2006, Physical review letters.

[14]  P. Zoller,et al.  Repulsively bound atom pairs in an optical lattice , 2006, Nature.

[15]  O. Mandel,et al.  Probing number squeezing of ultracold atoms across the superfluid-Mott insulator transition. , 2005, Physical review letters.

[16]  P. Zoller,et al.  d-Wave resonating valence bond states of fermionic atoms in optical lattices. , 2005, Physical review letters.

[17]  A. Georges,et al.  Interaction-induced adiabatic cooling and antiferromagnetism of cold fermions in optical lattices. , 2005, Physical review letters.

[18]  P. Zoller,et al.  The cold atom Hubbard toolbox , 2004, cond-mat/0410614.

[19]  T. Esslinger,et al.  Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions. , 2004, Physical review letters.

[20]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[21]  H. Bethe,et al.  A Conversation About Solid-State Physics , 2004 .

[22]  T. Esslinger,et al.  Transition from a strongly interacting 1d superfluid to a Mott insulator. , 2003, Physical review letters.

[23]  C. Regal,et al.  Creation of ultracold molecules from a Fermi gas of atoms , 2003, Nature.

[24]  J. Cirac,et al.  High-temperature superfluidity of fermionic atoms in optical lattices. , 2002, Physical review letters.

[25]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[26]  T. Hänsch,et al.  Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. , 2001, Physical review letters.

[27]  D. Vollhardt,et al.  Finite-temperature numerical renormalization group study of the Mott transition , 2000, cond-mat/0012329.

[28]  G. Bao AIR FORCE OFFICE OF SCIENTIFIC RESEARCH , 1999 .

[29]  J. Ashby References and Notes , 1999 .

[30]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[31]  F. Gebhard,et al.  The Mott Metal-Insulator Transition: Models and Methods , 1997 .

[32]  W. Ketterle,et al.  Direct, Nondestructive Observation of a Bose Condensate , 1996, Science.

[33]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[34]  Phillips,et al.  Adiabatic cooling of cesium to 700 nK in an optical lattice. , 1995, Physical review letters.

[35]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.

[36]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .