On the gradient flow of a one-homogeneous functional
暂无分享,去创建一个
Antonin Chambolle | Ariela Briani | Matteo Novaga | Giandomenico Orlandi | A. Chambolle | M. Novaga | A. Briani | G. Orlandi
[1] Sylvia Serfaty,et al. Vortices in the Magnetic Ginzburg-Landau Model , 2006 .
[2] J. Doob. Stochastic processes , 1953 .
[3] L. Caffarelli. The obstacle problem revisited , 1998 .
[4] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[5] H. Soner,et al. CONVERGENCE OF GINZBURG-LANDAU FUNCTIONALS IN 3-D SUPERCONDUCTIVITY , 2011 .
[6] Convergence of Ginzburg–Landau Functionals in Three-Dimensional Superconductivity , 2011, 1102.4650.
[7] C. M. Elliott,et al. A variational inequality approach to Hele-Shaw flow with a moving boundary , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[8] M. Novaga,et al. The Total Variation Flow in RN , 2002 .
[9] A. Chambolle,et al. A characterization of convex calibrable sets in , 2005 .
[10] J. Rodrigues. Variational methods in the stefan problem , 1994 .
[11] L. Hedberg,et al. Function Spaces and Potential Theory , 1995 .
[12] Homogenization of a Hele–Shaw Problem in Periodic and Random Media , 2009 .
[13] P. Rybka,et al. Almost classical solutions to the total variation flow , 2011, Journal of Evolution Equations.
[14] A. Chambolle,et al. A characterization of convex calibrable sets in RN with respect to anisotropic norms , 2008 .
[15] Yves Meyer,et al. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .
[16] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[17] A. G. O'Farrell,et al. FUNCTION SPACES AND POTENTIAL THEORY (Grundlehren der mathematischen Wissenschaften 314) By David R. Adams and Lars Inge Hedberg: 366 pp., DM.148., ISBN 3 540 57060 8 (Springer, 1996) , 1997 .
[18] D. Kinderlehrer,et al. The smoothness of the free boundary in the one phase stefan problem , 1978 .
[19] W. Ring. Structural Properties of Solutions to Total Variation Regularization Problems , 2000 .
[20] B. Gustafsson,et al. Applications of Variational Inequalities to a Moving Boundary Problem for Hele Shaw Flows , 1985 .
[21] Total Variation Flow and Sign Fast Diffusion in one dimension , 2011, 1107.2153.
[22] William K. Allard. Total Variation Regularization for Image Denoising, III. Examples , 2009, SIAM J. Imaging Sci..
[23] Y. Belayev. Continuity and Holder's Conditions for Sample Functions of Stationary Gaussian Processes , 1961 .