On the gradient flow of a one-homogeneous functional

We consider the gradient flow of a one-homogeneous functional, whose dual involves the derivative of a constrained scalar function. We show in this case that the gradient flow is related to a weak, generalized formulation of a Hele–Shaw flow. The equivalence follows from a variational representation, which is a variant of well-known variational representations for the Hele–Shaw problem. As a consequence we get existence and uniqueness of a weak solution to the Hele–Shaw flow. We also obtain an explicit representation for the Total Variation flow in dimension 1, and easily deduce basic qualitative properties, concerning in particular the "staircasing effect".

[1]  Sylvia Serfaty,et al.  Vortices in the Magnetic Ginzburg-Landau Model , 2006 .

[2]  J. Doob Stochastic processes , 1953 .

[3]  L. Caffarelli The obstacle problem revisited , 1998 .

[4]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[5]  H. Soner,et al.  CONVERGENCE OF GINZBURG-LANDAU FUNCTIONALS IN 3-D SUPERCONDUCTIVITY , 2011 .

[6]  Convergence of Ginzburg–Landau Functionals in Three-Dimensional Superconductivity , 2011, 1102.4650.

[7]  C. M. Elliott,et al.  A variational inequality approach to Hele-Shaw flow with a moving boundary , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  M. Novaga,et al.  The Total Variation Flow in RN , 2002 .

[9]  A. Chambolle,et al.  A characterization of convex calibrable sets in , 2005 .

[10]  J. Rodrigues Variational methods in the stefan problem , 1994 .

[11]  L. Hedberg,et al.  Function Spaces and Potential Theory , 1995 .

[12]  Homogenization of a Hele–Shaw Problem in Periodic and Random Media , 2009 .

[13]  P. Rybka,et al.  Almost classical solutions to the total variation flow , 2011, Journal of Evolution Equations.

[14]  A. Chambolle,et al.  A characterization of convex calibrable sets in RN with respect to anisotropic norms , 2008 .

[15]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[16]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[17]  A. G. O'Farrell,et al.  FUNCTION SPACES AND POTENTIAL THEORY (Grundlehren der mathematischen Wissenschaften 314) By David R. Adams and Lars Inge Hedberg: 366 pp., DM.148., ISBN 3 540 57060 8 (Springer, 1996) , 1997 .

[18]  D. Kinderlehrer,et al.  The smoothness of the free boundary in the one phase stefan problem , 1978 .

[19]  W. Ring Structural Properties of Solutions to Total Variation Regularization Problems , 2000 .

[20]  B. Gustafsson,et al.  Applications of Variational Inequalities to a Moving Boundary Problem for Hele Shaw Flows , 1985 .

[21]  Total Variation Flow and Sign Fast Diffusion in one dimension , 2011, 1107.2153.

[22]  William K. Allard Total Variation Regularization for Image Denoising, III. Examples , 2009, SIAM J. Imaging Sci..

[23]  Y. Belayev Continuity and Holder's Conditions for Sample Functions of Stationary Gaussian Processes , 1961 .