RTSDE: Recursive total-sum-distances-based density estimation approach and its application for autonomous real-time video analytics
暂无分享,去创建一个
[1] I. Haritaoglu,et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002 .
[2] Massimo Piccardi,et al. Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).
[3] Plamen Angelov,et al. Autonomous Learning Systems: From Data Streams to Knowledge in Real-time , 2013 .
[4] Plamen Angelov,et al. Outside the box: an alternative data analytics framework , 2014, J. Autom. Mob. Robotics Intell. Syst..
[5] L. Davis,et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.
[6] P. Angelov,et al. A fast approach to novelty detection in video streams using recursive density estimation , 2008, 2008 4th International IEEE Conference Intelligent Systems.
[7] Plamen Angelov,et al. Real-time novelty detection in video using background subtraction techniques: State of the art a practical review , 2014, 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
[8] Plamen P. Angelov,et al. An approach to automatic real‐time novelty detection, object identification, and tracking in video streams based on recursive density estimation and evolving Takagi–Sugeno fuzzy systems , 2011, Int. J. Intell. Syst..
[9] Plamen Angelov. Machine learning (collaborative systems) , 2006 .