Development and analysis of a lithium carbon monofluoride battery-lithium ion capacitor hybrid system for high pulse-power applications

[1]  A. Dey Lithium anode film and organic and inorganic electrolyte batteries , 1977 .

[2]  David Linden,et al.  The lithium—sulfur dioxide primary battery — its characteristics, performance and applications , 1980 .

[3]  T. Nakajima,et al.  Discharge reaction and overpotential of the graphite fluoride cathode in a nonaqueous lithium cell , 1987 .

[4]  T. Nakajima,et al.  Kinetic Study of Discharge Reaction of Lithium‐Graphite Fluoride Cell , 1988 .

[5]  Terrill B. Atwater,et al.  Man portable power needs of the 21st century: I. Applications for the dismounted soldier. II. Enhanced capabilities through the use of hybrid power sources , 2000 .

[6]  Ralph E. White,et al.  Power and life extension of battery-ultracapacitor hybrids , 2002 .

[7]  Ralph E. White,et al.  Experimental characterization of hybrid power systems under pulse current loads , 2002 .

[8]  Wendy G. Pell,et al.  Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes , 2004 .

[9]  Godfrey Sikha,et al.  Performance optimization of a battery-capacitor hybrid system , 2004 .

[10]  B. Popov,et al.  Capacity Fade Analysis of a Battery/Super Capacitor Hybrid and a Battery under Pulse Loads – Full Cell Studies , 2005 .

[11]  R. Yazami,et al.  Physical characteristics and rate performance of (CFx)n (0.33 < x < 0.66) in lithium batteries , 2006 .

[12]  A. Suszko Lithium Carbon Monofluoride: The Next Primary Chemistry for Soldier Portable Power Sources , 2006 .

[13]  R. Yazami,et al.  Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries , 2007 .

[14]  Jeffrey Read,et al.  Carbothermal treatment for the improved discharge performance of primary Li/CFx battery , 2009 .

[15]  R. Yazami,et al.  Primary Batteries – Nonaqueous Systems | Lithium-Polycarbon Monofluoride , 2009 .

[16]  Manel Gasulla,et al.  Runtime Extension of Low-Power Wireless Sensor Nodes Using Hybrid-Storage Units , 2010, IEEE Transactions on Instrumentation and Measurement.

[17]  Petr Novák,et al.  Simulation of a supercapacitor/Li-ion battery hybrid for pulsed applications , 2010 .

[18]  J. Read,et al.  LiF Formation and Cathode Swelling in the Li/CFx Battery , 2011 .

[19]  A. Emadi,et al.  A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles , 2012, IEEE Transactions on Power Electronics.

[20]  Lech M. Grzesiak,et al.  A lithium battery and ultracapacitor hybrid energy source for an urban electric vehicle , 2012 .

[21]  Patricia H. Smith,et al.  Lithium-ion capacitors: Electrochemical performance and thermal behavior , 2013 .

[22]  Weisheng Jiang,et al.  Plug-In Hybrid Electric Vehicles , 2014 .

[23]  Clark Hochgraf,et al.  Effect of ultracapacitor-modified PHEV protocol on performance degradation in lithium-ion cells , 2014 .

[24]  Donghwa Shin,et al.  Thermal management of batteries using a hybrid supercapacitor architecture , 2014, 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[25]  Stephen R. Cain,et al.  Empirical evaluation of the improvement of battery output when coupled with a capacitor bank , 2014 .

[26]  Jun Xu,et al.  A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles , 2015 .

[27]  Bo Liu,et al.  Lithium and lithium ion batteries for applications in microelectronic devices: A review , 2015 .