Wellposedness of an elliptic-dispersive coupled system for MEMS
暂无分享,去创建一个
[1] A. Lacey,et al. Quenching for a semi-linear wave equation for micro-electro-mechanical systems , 2022, Proceedings of the Royal Society A.
[2] A. Lacey,et al. Quenching for a semi-linear wave equation for MEMS , 2022, 2210.14821.
[3] S. Davis. Viscous Flow , 2021, Introductory Incompressible Fluid Mechanics.
[4] Mario Versaci,et al. On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions , 2019, International Journal of Non-Linear Mechanics.
[5] Christoph Walker,et al. Some singular equations modeling MEMS , 2016, 1706.02959.
[6] Yujin Guo,et al. Dynamical Solutions of Singular Wave Equations Modeling Electrostatic MEMS , 2010, SIAM J. Appl. Dyn. Syst..
[7] Yujin Guo,et al. Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS , 2010 .
[8] N. Ghoussoub,et al. Uniqueness of Solutions for an Elliptic Equation Modeling MEMS , 2008, 0810.1257.
[9] Yisong Yang,et al. Nonlinear non-local elliptic equation modelling electrostatic actuation , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[10] Minhang Bao,et al. Squeeze film air damping in MEMS , 2007 .
[11] T. Tao. Nonlinear dispersive equations : local and global analysis , 2006 .
[12] J. Pelesko,et al. Modeling MEMS and NEMS , 2002 .
[13] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[14] C. Ruiz,et al. Applied Solid Mechanics , 2009 .
[15] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.