Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film

A sculptured nematic thin film (SNTF) is an assembly of parallel nanowires that are shaped in a fixed plane orthogonal to the substrate on which the film is deposited. The absorbance, reflectance, and transmittance of a linearly polarized, obliquely incident plane wave were calculated for a planar metal/SNTF interface in the Kretschmann configuration, the wave vector of the plane wave lying wholly in the morphologically significant plane of the SNTF. The permittivity profile of the chosen SNTF was supposed to have been sculptured during physical vapor deposition by varying the vapor incidence angle sinusoidally about a mean value. Calculations revealed that (i) multiple surface-plasmon-polariton (SPP) trains of the same color can be independently guided by the metal/SNTF interface, (ii) not all SPP trains have to be co-propagating, and (iii) not all SPP trains have to be of the same linear polarization state. As different SPP trains move with different speeds, guided by the interface, exciting prospects emerge for error-free sensing and plasmonics-based communication.

[1]  A. Lakhtakia,et al.  On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with a sinusoidal refractive-index profile , 2010 .

[2]  A. Lakhtakia Reflection of an obliquely incident plane wave by a half space filled by a helicoidal bianisotropic medium , 2010 .

[3]  Xiang Zhang,et al.  Light-driven nanoscale plasmonic motors. , 2010, Nature nanotechnology.

[4]  S. Barnett,et al.  The enigma of optical momentum in a medium , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  A. Lakhtakia,et al.  Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part IV: Canonical problem , 2010, 1002.2435.

[6]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[7]  A. Lakhtakia,et al.  Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence , 2009 .

[8]  A. Lakhtakia,et al.  On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  A. Lakhtakia,et al.  Morphological effects on surface-plasmon-polariton waves at the planar interface of a metal and a columnar thin film , 2008 .

[10]  Ibrahim Abdulhalim,et al.  Surface Plasmon Resonance for Biosensing: A Mini-Review , 2008 .

[11]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[12]  R. Messier The nano-world of thin films , 2008 .

[13]  A. Lakhtakia,et al.  Morphological influence on surface--wave propagation at the planar interface of a metal film and a columnar thin film , 2007, 0706.4300.

[14]  A. Lakhtakia Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium , 2007, 0706.1365.

[15]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[16]  Sulabha K. Kulkarni,et al.  Plasmon-assisted photonics at the nanoscale , 2007 .

[17]  Pieter G. Kik,et al.  SURFACE PLASMON NANOPHOTONICS , 2007 .

[18]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[19]  J. Homola Surface plasmon resonance based sensors , 2006 .

[20]  Jaan Kiusalaas,et al.  Numerical Methods in Engineering with MATLAB®: Index , 2005 .

[21]  A. Lakhtakia,et al.  Sculptured nematic thin films with periodically modulated tilt angle as rugate filters , 2005 .

[22]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[23]  Dilip K. Paul,et al.  Sculptured Thin Films: Nanoengineered Morphology and Optics , 2005 .

[24]  Gisia Beydaghyan,et al.  Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure , 2004 .

[25]  Kate Kaminska,et al.  Simulating structure and optical response of vacuum evaporated porous rugate filters , 2004 .

[26]  F. Chiadini,et al.  Gaussian model for refractive indexes of columnar thin films and Bragg multilayers , 2004 .

[27]  Stephen M. Barnett,et al.  The angular momentum of light inside a dielectric , 2003 .

[28]  Hilmar Franke,et al.  Selective optical detection of aromatic vapors. , 2002, Applied optics.

[29]  Vijayakumar C. Venugopal,et al.  Origin and evolution of sculptured thin films , 2000 .

[30]  H. Kano,et al.  Locally excited surface-plasmon-polaritons for thickness measurement of LBK films , 1998 .

[31]  I. Hodgkinson,et al.  Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. , 1998, Applied optics.

[32]  Qi Hong Wu,et al.  Birefringent Thin Films and Polarizing Elements , 1998 .

[33]  Akhlesh Lakhtakia,et al.  Engineered sculptured nematic thin films , 1997 .

[34]  Akhlesh Lakhtakia,et al.  Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[36]  B. Bovard Rugate filter theory: an overview. , 1993, Applied optics.

[37]  Gerard Nienhuis,et al.  Eigenfunction description of laser beams and orbital angular momentum of light , 1992 .

[38]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[39]  S. Chandrasekhar Liquid Crystals: Cholesteric liquid crystals , 1992 .

[40]  J. Sambles,et al.  Polarization Conversion Using Prism-coupled Surface Plasmon-polaritons , 1991 .

[41]  J. Sambles,et al.  Surface Plasmon-polaritons on an Anisotropic Substrate , 1990 .

[42]  C. Pearson,et al.  Surface plasmon resonance studies of gas effects in phthalocyanine Langmuir-Blodgett films☆ , 1988 .

[43]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[44]  J. Sambles,et al.  Detection of surface director reorientation in a nematic liquid crystal , 1987 .

[45]  A. Lakhtakia Cartesian solutions of Maxwell's equations for linear anisotropic media. Extension of the Mrozowski algorithm , 1987 .

[46]  John Roy Sambles,et al.  Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection , 1987 .

[47]  Steven C. Chapra,et al.  Numerical Methods for Engineers , 1986 .

[48]  M. Mrozowski General solutions to Maxwell's equations in a bianisotropic medium a computer oriented, spectral domain approach , 1986 .

[49]  隆夫 国府田,et al.  V. M. Agranovich and D. L. Mills 編: Surface Polaritons, Electromagnetic Waves at Surfaces and Interfaces, North-Holland, Amsterdam and New York, 1982, xvi+717ページ, 24.5×17cm, 38,350円 (Modern Problems in Condensed Matter Sciences, Vol. 1). , 1983 .

[50]  G. J. Sprokel The Reflectivity of a Liquid Crystal Cell in a Surface Plasmon Experiment , 1981 .

[51]  G. J. Sprokel,et al.  Determination of the Surface Tilt Angle by Attenuated Total Reflection , 1981 .

[52]  P. Tien Integrated optics and new wave phenomena in optical waveguides , 1977 .

[53]  H. Simon,et al.  Surface plasmons in silver films—a novel undergraduate experiment , 1975 .

[54]  V. A. I︠A︡kubovich,et al.  Linear differential equations with periodic coefficients , 1975 .

[55]  Dwight W. Berreman,et al.  Optics in smoothly varying anisotropic planar structures: Application to liquid-crystal twist cells* , 1973 .

[56]  Hollis H. C. Chen Dyadic Green's function and radiation in a uniaxially anisotropic medium† , 1973 .

[57]  D. W. Berreman,et al.  Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation , 1972 .

[58]  N. R. Ogg,et al.  A Huygen's principle for anisotropic media , 1971 .

[59]  D. W. Berreman,et al.  Bragg Reflection of Light from Single-Domain Cholesteric Liquid-Crystal Films , 1970 .

[60]  S. Teitler,et al.  Refraction in Stratified, Anisotropic Media* , 1970 .

[61]  E. Kretschmann,et al.  Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light , 1968 .

[62]  L. Bergstein,et al.  A Huygens’ Principle for Uniaxially Anisotropic Media*† , 1966 .

[63]  H. Unz Electromagnetic radiation in drifting tellegen anisotropic medium , 1963 .

[64]  N. Marcuvitz,et al.  On the Representation of the Electric and Magnetic Fields Produced by Currents and Discontinuities in Wave Guides. I , 1951 .

[65]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[66]  C. Curry Electromagnetic theory of light , 1905 .