Review of the potential of silanes as rocket/scramjet fuels
暂无分享,去创建一个
Domenico Simone | Michael Pfitzner | Claudio Bruno | Bernhard Hidding | M. Pfitzner | C. Bruno | B. Hidding | D. Simone
[1] Michael E. Coltrin,et al. Theoretical study of the heats of formation of Si2Hn (n = 0-6) compounds and trisilane , 1986 .
[2] R. C. Rogers,et al. Ignition of SiH4-H2-O2-N2 behind reflected shock waves , 1983 .
[3] LeRoy G. Green,et al. THE HEATS OF FORMATION OF SOME UNSTABLE GASEOUS HYDRIDES1 , 1961 .
[4] Egon Wiberg. Alfred Stock 1876‐1946 , 1950 .
[5] F. J. Ocklenburg,et al. Beiträge zur Chemie des Siliciums und des Germaniums. XXXVI: Darstellung von Magnesiumsilicid aus den Elementen durch Sinterung , 1985 .
[6] Edward A. Fletcher. Scramjets and Surfboards: Some Forgotten History , 2007 .
[7] Michael E. Coltrin,et al. A theoretical study of the heats of formation of silicon hydride (SiHn), silicon chloride (SiCln), and silicon hydride chloride (SiHnClm) compounds , 1985 .
[8] F. Fehéar,et al. Beiträge zur Chemie des Siliciums und Germaniums. XXX [1]. Die photochemische Disproportionierung von iso- und n-Pentasilan. Darstellung einiger neuer verzweigter Hepta- und Octasilane , 1980 .
[9] Tatsuya Shimoda,et al. Solution-processed silicon films and transistors , 2006, Nature.
[10] LeRoy G. Green,et al. The Heats of Formation of Trisilane and Trigermane1 , 1964 .
[11] Claudio Bruno,et al. Silicon Hydrides as High-Energy-Fuels: Facts and Perspectives , 2007 .
[12] G. Kuhlbörsch,et al. Beiträge zur Chemie des Siliciums und Germaniums. V. Über eine neue, einfache Arbeitstechnik zur Handhabung der Silane und anderer luft‐oder feuchtigkeitsempfindlicher Flüssigkeiten , 1960 .
[13] Michael Pfitzner,et al. Rocket Propellant Characteristics of Silanes/O2 , 2006 .
[14] Claudio Bruno,et al. Numerical Study of the Ignition of Silane/Hydrogen Mixtures , 1999 .
[15] H. O'neal,et al. Stoichiometry and possible mechanism of SiH4O2 explosions , 1987 .
[16] G. Kuhlbörsch,et al. Beiträge zur Chemie des Siliciums und Germaniums. IV. Über die Drastellung des Rohsilas , 1960 .
[17] Charles K. Westbrook,et al. A numerical study of silane combustion , 1991 .
[18] C. Arena,et al. Highly tensile strained silicon–carbon alloys epitaxially grown into recessed source drain areas of NMOS devices , 2006, 2006 International SiGe Technology and Device Meeting.
[19] P. Roth,et al. FORMATION OF HYDROGEN ATOMS IN SILANE PYROLYSIS BEHIND SHOCK WAVES. KINETICS AND THERMOCHEMISTRY OF SIH4, SIH3, AND SIH2 DECOMPOSITION , 1994 .
[20] R. T. White,et al. Mechanism of the silane decomposition. I. Silane loss kinetics and rate inhibition by hydrogen. II. Modeling of the silane decomposition (all stages of reaction) , 1985 .
[21] Seiichiro Koda,et al. Kinetic aspects of oxidation and combustion of silane and related compounds , 1992 .
[22] P. Roth,et al. A Shock Tube Study of the Thermal Decomposition of Si2H6 Based on Si and SiH2 Measurements , 1995 .
[23] Marianne Baudler,et al. Franz Fehér (1903–1991) , 1998 .
[24] D. Schinkitz,et al. Beiträge zur Chemie des Siliciums und Germaniums. Darstellung von Rohsilan in einem 1‐l‐Reaktor , 1971 .
[25] G. S. Diskin,et al. Effect of silane concentration on the supersonic combustion of a silane/methane mixture , 1986 .
[26] R. Clayton Rogers,et al. Experimental Supersonic Combustion Research at NASA Langley , 1998 .
[27] C. J. Jachimowski,et al. A Chemical Kinetic Mechanism for the Ignition of Silane/Hydrogen Mixtures , 1983 .
[28] H. Lee Beach. Supersonic Combustion Status and Issues , 1992 .
[29] P. Roth,et al. Evaluation of the kinetic and thermochemical parameters of the SiH4→SiH2 + H2 and Si2H6→SiH2 + SiH4 reactions from the results of shock-tube measurements , 1996 .
[30] Diane L. Linne,et al. A compilation of lunar and Mars exploration strategies utilizing indigenous propellants , 1992 .
[31] C. R. Mcclinton,et al. Development and evaluation of a plasma jet flameholder for scramjets , 1984 .
[32] G. Landis. Materials refining on the Moon , 2007 .
[33] B. Hidding,et al. A High-Performance Synthetic Bipropellant for Chemical Space Propulsion , 2007 .
[34] Linda J. Broadbelt,et al. Thermochemistry of Silicon−Hydrogen Compounds Generalized from Quantum Chemical Calculations , 2004 .
[35] Alexander F. Sax,et al. Beyond the Harmonic Approximation: Impact of Anharmonic Molecular Vibrations on the Thermochemistry of Silicon Hydrides , 2002 .
[36] W. L. Jolly,et al. THE HEATS OF DECOMPOSITION OF ARSINE AND STIBINE1 , 1960 .
[37] M. Gerstein,et al. Use of silane-methane mixtures for scramjet ignition , 1985 .
[38] Claudio Bruno,et al. Silanes as Fuels for Scramjets and Their Applications , 2006 .
[39] Allan Paull,et al. Silane as an ignition aid in scramjets , 1987 .
[40] F. Fehér,et al. Verbrennungswärmen und Bildungsenthalpien von SiH4, Si2H6, Si3H8 und n‐Si4H10 , 1963 .
[41] P. Roth,et al. ARAS measurements on the thermal decomposition of silane , 1993 .
[42] Robert M. Zubrin,et al. The Case for Mars , 1996 .
[43] Mark J. Lewis,et al. Development of a Jet-A/Silane/Hydrogen Reaction Mechanism for Modeling a , 1999 .
[44] Mitsuo Koshi,et al. Thermal decomposition mechanism of disilane. , 2006, The journal of physical chemistry. A.
[45] Burkhard Krumm,et al. The sila-explosives Si(CH2N3)4 and Si(CH2ONO2)4: silicon analogues of the common explosives pentaerythrityl tetraazide, C(CH2N3)4, and Pentaerythritol Tetranitrate, C(CH2ONO2)4. , 2007, Journal of the American Chemical Society.
[46] M. Y. Hussaini,et al. Major Research Topics in Combustion , 1992 .
[47] Alfred Stock,et al. Hydrides of boron and silicon , 1933 .
[48] H. Loftus. Application of high density nitric acid oxidizer and UDMH with silicone fluid additive fuel to the Agena Rocket Engine , 1971 .
[49] P. Roth,et al. Determination of silane dissociation energy by measuring decomposition and recombination rate constants for SiH4⇄SiH2+H2 , 1994 .
[50] Geoffrey A. Landis,et al. Lunar production of solar cells , 1989 .
[51] K. Berman,et al. Additives for Heat-Transfer Reduction in the Propellant Combinations N2O4-MMH and N2O4—A-50 , 1973 .
[52] F. Fehéar,et al. Beiträge zur Chemie des Siliciums und Germaniums. XXXI [1]. Die photochemische Darstellung neuer Isopropoxyderivate des Tri-, n-Tetra-, iso-Tetra- und n-Pentasilans und deren saure Hydrolyse zu Bis-Silanyl-Äthern , 1980 .
[53] Ludwig Gattermann,et al. Untersuchungen über Silicium und Bor , 1889 .
[54] H. Baier,et al. Beiträge zur Chemie des Siliciums und des Germaniums. XXXVII. Weitere Untersuchungen zur Darstellung eines Silangemisches , 1985 .
[55] F. Fehér,et al. Ein Verfahren zur Darstellung höherer Silane , 1971 .
[56] E. Koch,et al. Special Materials in Pyrotechnics: VI. Silicon - An Old Fuel with New Perspectives , 2007 .
[57] C. Alcock,et al. Thermodynamic Properties of Individual Substances , 1994 .
[58] G. B. Northam,et al. Supersonic combustion of a silane/methane mixture , 1985 .
[59] E. Wiberg. Alfred Stock and the renaissance of inorganic chemistry , 1977 .
[60] Mitsuo Koshi,et al. Channel specific rate constants relevant to the thermal decomposition of disilane. , 2005, The journal of physical chemistry. A.
[61] E. H. Andrews,et al. Langley Mach 4 scramjet test facility , 1985 .
[62] Lockheed Martin,et al. Comparison of Propulsion Options for a Lunar Lander Ascent Stage , 2005 .
[63] Sanders Rosenberg. Concepts in lunar resource utilization , 1991 .
[64] Bernhard Hidding,et al. Silanes as Fuels for SCRJ , 2005 .
[65] Gernot Katzer,et al. Computational Thermochemistry of Medium-Sized Silicon Hydrides , 1997 .