Adhesion of Porphyromonas gingivalis and Tannerella forsythia to dentin and titanium with sandblasted and acid etched surface coated with serum and serum proteins - An in vitro study.

[1]  F. Camacho-Alonso,et al.  Salivary Concentration of Oxidative Stress Biomarkers in a Group of Patients with Peri-Implantitis: A Transversal Study. , 2016, Clinical implant dentistry and related research.

[2]  S. Caputi,et al.  Porphyromonas gingivalis biofilm formation in different titanium surfaces, an in vitro study. , 2016, Clinical oral implants research.

[3]  U. Covani,et al.  Clinical and microbiological findings in patients with peri-implantitis: a cross-sectional study. , 2016, Clinical oral implants research.

[4]  A. Lussi,et al.  A Biofilm Pocket Model to Evaluate Different Non-Surgical Periodontal Treatment Modalities in Terms of Biofilm Removal and Reformation, Surface Alterations and Attachment of Periodontal Ligament Fibroblasts , 2015, PloS one.

[5]  J. Enghild,et al.  KLIKK proteases of Tannerella forsythia: putative virulence factors with a unique domain structure , 2015, Front. Microbiol..

[6]  J. Enghild,et al.  Mirolase, a novel subtilisin-like serine protease from the periodontopathogen Tannerella forsythia , 2015, Biological chemistry.

[7]  A. Winkel,et al.  Pyrosequencing of supra- and subgingival biofilms from inflamed peri-implant and periodontal sites , 2014, BMC oral health.

[8]  J. Potempa,et al.  The S-layer proteins of Tannerella forsythia are secreted via a type IX secretion system that is decoupled from protein O-glycosylation. , 2014, Molecular oral microbiology.

[9]  J. Enghild,et al.  Miropin, a Novel Bacterial Serpin from the Periodontopathogen Tannerella forsythia, Inhibits a Broad Range of Proteases by Using Different Peptide Bonds within the Reactive Center Loop* , 2014, The Journal of Biological Chemistry.

[10]  Tiantian Wang,et al.  kgp, rgpA, and rgpB DNA vaccines induce antibody responses in experimental peri-implantitis. , 2014, Journal of periodontology.

[11]  J. Potempa,et al.  Porphyromonas gingivalis Gingipains Selectively Reduce CD14 Expression, Leading to Macrophage Hyporesponsiveness to Bacterial Infection , 2014, Journal of Innate Immunity.

[12]  K. Mishima,et al.  Porphyromonas gingivalis-derived Lysine Gingipain Enhances Osteoclast Differentiation Induced by Tumor Necrosis Factor-α and Interleukin-1β but Suppresses That by Interleukin-17A , 2014, The Journal of Biological Chemistry.

[13]  J. Potempa,et al.  Cleavage of IgG1 in gingival crevicular fluid is associated with the presence of Porphyromonas gingivalis. , 2013, Journal of periodontal research.

[14]  M. Sela,et al.  The adhesion of oral bacteria to modified titanium surfaces: role of plasma proteins and electrostatic forces. , 2013, Clinical oral implants research.

[15]  J. Potempa,et al.  Benzamidine derivatives inhibit the virulence of Porphyromonas gingivalis. , 2013, Molecular oral microbiology.

[16]  C. Ramseier,et al.  10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. , 2012, Clinical implant dentistry and related research.

[17]  G. Svensäter,et al.  Salivary proteins promote proteolytic activity in Streptococcus mitis biovar 2 and Streptococcus mutans. , 2012, Molecular oral microbiology.

[18]  M. Chiquet,et al.  Tenascin-C and matrix metalloproteinase-9 levels in crevicular fluid of teeth and implants. , 2012, Clinical implant dentistry and related research.

[19]  G. Hajishengallis,et al.  The keystone-pathogen hypothesis , 2012, Nature Reviews Microbiology.

[20]  M. Brooker,et al.  Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. , 2012, Journal of clinical periodontology.

[21]  J. Potempa,et al.  Cleavage of IgG1 and IgG3 by gingipain K from Porphyromonas gingivalis may compromise host defense in progressive periodontitis , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[22]  K. Kum,et al.  Identification of Porphyromonas gingivalis lipopolysaccharide-binding proteins in human saliva. , 2011, Molecular immunology.

[23]  J. Potempa,et al.  Comparison of gingival crevicular fluid sampling methods in patients with severe chronic periodontitis. , 2011, Journal of periodontology.

[24]  A. V. van Winkelhoff,et al.  Early bacterial colonization and soft tissue health around zirconia and titanium abutments: an in vivo study in man. , 2011, Clinical oral implants research.

[25]  N. Buduneli,et al.  C-telopeptide pyridinoline crosslinks of type I collagen, soluble RANKL, and osteoprotegerin levels in crevicular fluid of dental implants with peri-implantitis: a case-control study. , 2011, The International journal of oral & maxillofacial implants.

[26]  P. Kolenbrander,et al.  The road to ruin: the formation of disease-associated oral biofilms. , 2010, Oral diseases.

[27]  J. Potempa,et al.  Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon's knife to a meat chopper-like brutal degradation of proteins. , 2010, Periodontology 2000.

[28]  H. Koo,et al.  Adsorption of salivary and serum proteins, and bacterial adherence on titanium and zirconia ceramic surfaces. , 2008, Clinical oral implants research.

[29]  In-Seop Lee,et al.  The biocompatibility of SLA-treated titanium implants , 2008, Biomedical materials.

[30]  N. Lang,et al.  Bacterial colonization immediately after installation on oral titanium implants. , 2007, Clinical oral implants research.

[31]  N. Bostanci,et al.  Regulation of RANKL and OPG gene expression in human gingival fibroblasts and periodontal ligament cells by Porphyromonas gingivalis: a putative role of the Arg-gingipains. , 2007, Microbial pathogenesis.

[32]  A. Blom,et al.  Biphasic Effect of Gingipains from Porphyromonas gingivalis on the Human Complement System1 , 2007, The Journal of Immunology.

[33]  J. Potempa,et al.  Gingipains from Porphyromonas gingivalis W83 Synergistically Disrupt Endothelial Cell Adhesion and Can Induce Caspase-Independent Apoptosis , 2006, Infection and Immunity.

[34]  A. Haffajee,et al.  Dynamics of initial subgingival colonization of 'pristine' peri-implant pockets. , 2006, Clinical oral implants research.

[35]  E. Nemoto,et al.  Proteolysis of ICAM-1 on Human Oral Epithelial Cells by Gingipains , 2003, Journal of dental research.

[36]  J. Olsson,et al.  Bacteria-binding plasma proteins in pellicles formed on hydroxyapatite in vitro and on teeth in vivo. , 2003, Oral microbiology and immunology.

[37]  C. Douglas,et al.  Activation of human matrix metalloproteinase 2 by gingival crevicular fluid and Porphyromonas gingivalis. , 2003, Journal of clinical periodontology.

[38]  G. Griffiths Formation, collection and significance of gingival crevice fluid. , 2003, Periodontology 2000.

[39]  J. M. Goodson Gingival crevice fluid flow. , 2003, Periodontology 2000.

[40]  K. Nakayama,et al.  Role of Gingipains in Growth of Porphyromonas gingivalis in the Presence of Human Serum Albumin , 2001, Infection and Immunity.

[41]  A. Tanner,et al.  Pre- and post-implantation microbiota of the tongue, teeth, and newly placed implants. , 1999, Journal of clinical periodontology.

[42]  S. Socransky,et al.  Microbial complexes in subgingival plaque. , 1998, Journal of clinical periodontology.

[43]  M. Quirynen,et al.  The influence of titanium abutment surface roughness on plaque accumulation and gingivitis: short-term observations. , 1996, The International journal of oral & maxillofacial implants.

[44]  P. Kolenbrander,et al.  Adhere today, here tomorrow: oral bacterial adherence , 1993, Journal of bacteriology.

[45]  R. Ranney,et al.  Relationship between gingival crevicular fluid and serum antibody titers in young adults with generalized and localized periodontitis , 1985, Infection and immunity.

[46]  D. Kim,et al.  A 10-year retrospective radiographic study of implantium dental implants. , 2015, The International journal of periodontics & restorative dentistry.

[47]  秋山 智人 Porphyromonas gingivalis-derived lysine gingipain enhances osteoclast differentiation induced by tumor necrosis factor-α and interleukin-1β, but suppresses that by interleukin-17A : importance of proteolytic degradation of osteoprotegerin by lysine gingipain , 2013 .

[48]  S. Eick,et al.  Comparison of real-time polymerase chain reaction and DNA-strip technology in microbiological evaluation of periodontitis treatment. , 2011, Diagnostic microbiology and infectious disease.

[49]  이시영 Binding of oral streptococci to human fibrinogen 구강 연쇄구균의 사람 원섬유소에의 부착에 관한 연구 , 1996 .

[50]  M. J. Wagner,et al.  ANTIBACTERIAL ACTIVITY OF DENTAL IMPLANT METALS , 1992, Implant dentistry.

[51]  N. Lang,et al.  In vivo early human dental plaque formation on different supporting substances. A scanning electron microscopic and bacteriological study. , 1991, Clinical oral implants research.