Estimates of anthropogenic carbon uptake from four three‐dimensional global ocean models

We have compared simulations of anthropogenic CO2 in the four three‐dimensional ocean models that participated in the first phase of the Ocean Carbon‐Cycle Model Intercomparison Project (OCMIP), as a means to identify their major differences. Simulated global uptake agrees to within ±19%, giving a range of 1.85±0.35 Pg C yr−1 for the 1980–1989 average. Regionally, the Southern Ocean dominates the present‐day air‐sea flux of anthropogenic CO2 in all models, with one third to one half of the global uptake occurring south of 30°S. The highest simulated total uptake in the Southern Ocean was 70% larger than the lowest. Comparison with recent data‐based estimates of anthropogenic CO2 suggest that most of the models substantially overestimate storage in the Southern Ocean; elsewhere they generally underestimate storage by less than 20%. Globally, the OCMIP models appear to bracket the real ocean's present uptake, based on comparison of regional data‐based estimates of anthropogenic CO2 and bomb 14C. Column inventories of bomb 14C have become more similar to those for anthropogenic CO2 with the time that has elapsed between the Geochemical Ocean Sections Study (1970s) and World Ocean Circulation Experiment (1990s) global sampling campaigns. Our ability to evaluate simulated anthropogenic CO2 would improve if systematic errors associated with the data‐based estimates could be provided regionally.

[1]  E. Maier‐Reimer,et al.  Sea‐air CO2 fluxes and carbon transport: A comparison of three ocean general circulation models , 2000 .

[2]  S. Rahmstorf,et al.  Sensitivity of Ventilation Rates and Radiocarbon Uptake to Subgrid-Scale Mixing in Ocean Models , 1999 .

[3]  R. Murnane,et al.  Spatial distribution of air‐sea CO2 fluxes and the interhemispheric transport of carbon by the oceans , 1999 .

[4]  E. Maier‐Reimer,et al.  Nutrient trapping in the equatorial Pacific: The ocean circulation solution , 1999 .

[5]  R. Feely,et al.  Comparison of methods to determine the anthropogenic CO2 invasion into the Atlantic Ocean , 1999 .

[6]  K. Johnson,et al.  Anthropogenic CO2 inventory of the Indian Ocean , 1999 .

[7]  Taro Takahashi,et al.  Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea-air pCO2 difference , 1999 .

[8]  J. Duplessy,et al.  Oceanic Radiocarbon Between Antarctica and South Africa Along Woce Section 16 at 30°E , 1999, Radiocarbon.

[9]  N. Gruber Anthropogenic CO2 in the Atlantic Ocean , 1998 .

[10]  G. Madec,et al.  A degradation approach to accelerate simulations to steady-state in a 3-D tracer transport model of the global ocean , 1998 .

[11]  Olivier Aumont Etude du cycle naturel du carbone dans un modele 3d de l'ocean mondial , 1998 .

[12]  Jean-Claude Dutay Influence du melange vertical et de la couche de melange sur la ventilation de l'ocean. Simulations numeriques des traceurs transitoires tritium-helium3 et cfcs avec le modele opa , 1998 .

[13]  J. Boutin,et al.  Long‐term variability of the air‐sea CO2 exchange coefficient: Consequences for the CO2 fluxes in the equatorial Pacific Ocean , 1997 .

[14]  K. Bryan A Numerical Method for the Study of the Circulation of the World Ocean , 1997 .

[15]  F. Joos,et al.  Ocean carbon transport in a box‐diffusion versus a general circulation model , 1997 .

[16]  T. Stocker,et al.  An improved method for detecting anthropogenic CO 2 in the oceans , 1997 .

[17]  T. Stocker,et al.  An improved method for detecting anthropogenic CO2 in the oceans , 1996 .

[18]  M. Follows,et al.  On models of bomb 14C in the North Atlantic , 1996 .

[19]  Gurvan Madec,et al.  A global ocean mesh to overcome the North Pole singularity , 1996 .

[20]  E. Maier‐Reimer,et al.  On the relations between the oceanic uptake of CO2 and its carbon isotopes , 1996 .

[21]  Jacqueline Boutin,et al.  Consistency of Geosat, SSM/I, and ERS-1 Global Surface Wind Speeds—Comparison with In Situ Data , 1996 .

[22]  Anthony C. Hirst,et al.  Chlorofluorocarbon uptake in a world ocean model 2 , 1997 .

[23]  M. Spall,et al.  Does Stommel's Mixed Layer “Demon” Work? , 1995 .

[24]  W. Broecker,et al.  Oceanic radiocarbon: Separation of the natural and bomb components , 1995 .

[25]  Corinne Le Quéré,et al.  AIR-SEA CO2 TRANSFER AND THE CARBON BUDGET OF THE NORTH ATLANTIC , 1995 .

[26]  N. K. Taylor Seasonal uptake of anthropogenic CO2 in an ocean general circulation model , 1995 .

[27]  N. K. Taylor Seasonal uptake of anthropogenic CO 2 in an ocean general circulation model , 1995 .

[28]  G. Danabasoglu,et al.  The Role of Mesoscale Tracer Transports in the Global Ocean Circulation , 1994, Science.

[29]  Ian G. Enting,et al.  Future emissions and concentrations of carbon dioxide: Key ocean / atmosphere / land analyses , 1994 .

[30]  P. Delecluse Modelling the Ocean Circulation , 1994 .

[31]  J. Orr Accord between ocean models predicting uptake of anthropogenic CO2 , 1993 .

[32]  E. Maier‐Reimer,et al.  Geochemical cycles in an Ocean General Circulation Model , 1993 .

[33]  U. Siegenthaler,et al.  Atmospheric carbon dioxide and the ocean , 1993, Nature.

[34]  Bruno Blanke,et al.  Variability of the Tropical Atlantic Ocean Simulated by a General Circulation Model with Two Different Mixed-Layer Physics , 1993 .

[35]  Klaus Hasselmann,et al.  Mean Circulation of the Hamburg LSG OGCM and Its Sensitivity to the Thermohaline Surface Forcing , 1993 .

[36]  P. Delecluse,et al.  Comment [on “Net diffusivity in ocean general circulation models with nonuniform grids” by F. L. Yin and I. Y. Fung] , 1992 .

[37]  R. Wanninkhof Relationship between wind speed and gas exchange over the ocean , 1992 .

[38]  J. Sarmiento,et al.  A perturbation simulation of CO2 uptake in an ocean general circulation model , 1992 .

[39]  I. Fung,et al.  Net diffusivity in ocean general circulation models with nonuniform grids , 1991 .

[40]  Philippe Gaspar,et al.  A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at Station Papa and long-term upper ocean study site , 1990 .

[41]  E. Maier‐Reimer,et al.  Ocean-circulation model of the carbon cycle , 1990 .

[42]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[43]  J. Houghton,et al.  Climate change : the IPCC scientific assessment , 1990 .

[44]  R. T. Watson,et al.  Greenhouse gases and aerosols , 1990 .

[45]  Keith W. Dixon,et al.  Simulations of radiocarbon in a coarse-resolution world ocean model: 1. Steady state prebomb distributions , 1989 .

[46]  J. Toggweiler,et al.  Simulations of radiocarbon in a coarse-resolution world ocean model: 2. Distributions of bomb-produced carbon 14 , 1989 .

[47]  K. Hasselmann,et al.  Transport and storage of CO2 in the ocean ——an inorganic ocean-circulation carbon cycle model , 1987 .

[48]  P. Smolarkiewicz,et al.  The multidimensional positive definite advection transport algorithm: further development and applications , 1986 .

[49]  W. Broecker,et al.  Isotopic versus micrometeorologic ocean CO2 fluxes: A serious conflict , 1986 .

[50]  W. Broecker,et al.  The distribution of bomb radiocarbon in the ocean , 1985 .

[51]  H. Zwally,et al.  Antarctic Sea Ice, 1973-1976: Satellite Passive-Microwave Observations , 1983 .

[52]  M. Redi Oceanic Isopycnal Mixing by Coordinate Rotation , 1982 .

[53]  S. Levitus Climatological Atlas of the World Ocean , 1982 .

[54]  M. Stuiver,et al.  GEOSECS Pacific Radiocarbon , 1980, Radiocarbon.

[55]  R. Weiss Carbon dioxide in water and seawater: the solubility of a non-ideal gas , 1974 .

[56]  W. Broecker,et al.  Gas exchange rates between air and sea , 1974 .

[57]  K. Bryan,et al.  An Approximate Equation of State for Numerical Models of Ocean Circulation , 1972 .

[58]  A. Arakawa Design of the UCLA general circulation model , 1972 .

[59]  T. Hoover,et al.  Effects of hydration on carbon dioxide exchange across an air‐water interface , 1969 .

[60]  J. Turner,et al.  A one‐dimensional model of the seasonal thermocline II. The general theory and its consequences , 1967 .

[61]  R. W. James,et al.  Antarctic Sea-Ice , 1924, Nature.