Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway

[1]  K. Hoek,et al.  Cancer stem cells versus phenotype‐switching in melanoma , 2010, Pigment cell & melanoma research.

[2]  L. Mariani,et al.  Heterogeneous phenotype of human melanoma cells with in vitro and in vivo features of tumor-initiating cells. , 2010, The Journal of investigative dermatology.

[3]  D. Dembélé,et al.  Genome‐wide analysis of POU3F2/BRN2 promoter occupancy in human melanoma cells reveals Kitl as a novel regulated target gene , 2010, Pigment cell & melanoma research.

[4]  C. Bertolotto,et al.  Fifteen‐year quest for microphthalmia‐associated transcription factor target genes , 2010, Pigment cell & melanoma research.

[5]  J. Han,et al.  Isolation and Characterization of Spheroid Cells from Human Malignant Melanoma Cell Line WM-266-4 , 2009, Tumor Biology.

[6]  E. Sahai,et al.  Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. , 2009, Cancer research.

[7]  Jae‐Hak Park,et al.  Zebrafish embryo extracts promote sphere‐forming abilities of human melanoma cell line , 2009, Cancer science.

[8]  P. Pollock,et al.  Active Notch1 confers a transformed phenotype to primary human melanocytes. , 2009, Cancer research.

[9]  R. Sturm,et al.  POU domain transcription factors: BRN2 as a regulator of melanocytic growth and tumourigenesis , 2008, Pigment cell & melanoma research.

[10]  P. Nuciforo,et al.  Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. , 2008, Cancer research.

[11]  N. Hayward,et al.  Histologic and epidemiologic correlates of P-MAPK, Brn-2, pRb, p53, and p16 immunostaining in cutaneous melanomas , 2008, Melanoma research.

[12]  Wenjun Guo,et al.  The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells , 2008, Cell.

[13]  A. Cochran,et al.  Immunohistochemical characteristics of melanoma , 2008, Journal of cutaneous pathology.

[14]  R. Dummer,et al.  In vivo switching of human melanoma cells between proliferative and invasive states. , 2008, Cancer research.

[15]  Mohamed H. Sayegh,et al.  Identification of cells initiating human melanomas , 2008, Nature.

[16]  B. Gardiner,et al.  Osteonectin downregulates E‐cadherin, induces Osteopontin and Focal adhesion kinase activity stimulating an invasive melanoma phenotype , 2007, International journal of cancer.

[17]  M. Herlyn,et al.  The many faces of Notch signaling in skin-derived cells. , 2007, Pigment cell research.

[18]  R. Sturm,et al.  Post-transcriptional regulation of melanin biosynthetic enzymes by cAMP and resveratrol in human melanocytes. , 2007, The Journal of investigative dermatology.

[19]  K. Sneppen,et al.  Theoretical Analysis of Epigenetic Cell Memory by Nucleosome Modification , 2007, Cell.

[20]  N. Hayward,et al.  Confirmation of a BRAF mutation-associated gene expression signature in melanoma. , 2007, Pigment cell research.

[21]  A. Sánchez-Aguilera,et al.  A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. , 2007, Cancer research.

[22]  Mary J. C. Hendrix,et al.  Reprogramming metastatic tumour cells with embryonic microenvironments , 2007, Nature Reviews Cancer.

[23]  Jane Goodall,et al.  Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. , 2006, Genes & development.

[24]  L. Nguyen,et al.  Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. , 2006, Developmental cell.

[25]  Keith T Flaherty,et al.  Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases , 2006, Molecular Cancer Therapeutics.

[26]  D. Elder,et al.  A tumorigenic subpopulation with stem cell properties in melanomas. , 2005, Cancer research.

[27]  R. Sturm,et al.  Co-expression of SOX9 and SOX10 during melanocytic differentiation in vitro. , 2005, Experimental cell research.

[28]  Markus Ringnér,et al.  Microarray expression profiling in melanoma reveals a BRAF mutation signature , 2004, Oncogene.

[29]  M. Herlyn,et al.  Human melanoblasts in culture: expression of BRN2 and synergistic regulation by fibroblast growth factor-2, stem cell factor, and endothelin-3. , 2003, The Journal of investigative dermatology.

[30]  S. Saule,et al.  Microphthalmia transcription factor analysis in posterior uveal melanomas. , 2003, Experimental eye research.

[31]  P. Parsons,et al.  Redox regulation of Brn-2/N-Oct-3 POU domain DNA binding activity and proteolytic formation of N-Oct-5 during melanoma cell nuclear extraction , 1998, Melanoma research.

[32]  G. Sutherland,et al.  The brn-2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells. , 1995, Oncogene.

[33]  F. Real,et al.  Phenotypic heterogeneity of melanoma. Relation to the differentiation program of melanoma cells , 1987, The Journal of experimental medicine.

[34]  Mark Shackleton,et al.  Efficient tumour formation by single human melanoma cells , 2008 .

[35]  P. Parsons,et al.  BRN2 in melanocytic cell development, differentiation, and transformation , 2006 .

[36]  V. Hearing,et al.  From Melanocytes to Melanoma , 2006 .

[37]  A. Houghton,et al.  Phenotypic heterogeneity of melanoma. , 1988, Progress in clinical and biological research.

[38]  Davis Lj,et al.  Phenotypic heterogeneity of melanoma. , 1988 .