Beyond bioclimatic envelopes: dynamic species' range and abundance modelling in the context of climatic change

B. Huntley (brian.huntley@durham.ac.uk), D. G. Hole and S. G. Willis, Ecosystem Science Centre, School of Biological and Biomedical Sciences, Durham Univ., South Road, Durham DH1 3LE, UK. P. Barnard, Birds & Environmental Change Partnership, Climate Change and BioAdaptation Div., South African National Biodiversity Inst., Kirstenbosch Research Centre, P/Bag X7, Claremont 7735, Cape Town, South Africa, and Percy FitzPatrick Inst. of African Ornithology, DST/NRF Centre of Excellence, Univ. of Cape Town, Rondebosch 7701, Cape Town, South Africa. R. Altwegg, Birds & Environmental Change Partnership, Climate Change and BioAdaptation Div., South African National Biodiversity Inst., Kirstenbosch Research Centre, P/Bag X7, Claremont 7735, Cape Town, South Africa, and Animal Demography Unit, Dept of Zoology, Univ. of Cape Town, Rondebosch 7701, Cape Town, South Africa. L. Chambers, Centre for Australian Weather & Climate Research Bureau of Meteorology, GPO Box 1289, Melbourne, Victoria 3001, Australia. B. W. T. Coetzee, Birds & Environmental Change Partnership, Climate Change and BioAdaptation Div., South African National Biodiversity Inst., Kirstenbosch Research Centre, P/Bag X7, Claremont 7735, Cape Town, South Africa, and Centre for Invasion Biology, Dept of Botany and Zoology, Stellenbosch Univ., Private Bag X1, Matieland 7602, South Africa. L. Gibson, Dept of Environment & Conservation, PO Box 51, Wanneroo WA 6946, Australia. P. A. R. Hockey, Percy FitzPatrick Inst. of African Ornithology, DST/NRF Centre of Excellence, Univ. of Cape Town, Rondebosch 7701, Cape Town, South Africa. G. F. Midgley, Birds & Environmental Change Partnership, Climate Change and BioAdaptation Div., South African National Biodiversity Inst., Kirstenbosch Research Centre, P/Bag X7, Claremont 7735, Cape Town, South Africa. L. G. Underhill, Animal Demography Unit, Dept of Zoology, Univ. of Cape Town, Rondebosch 7701, Cape Town, South Africa.

[1]  W. Thuiller,et al.  Predicting species distribution: offering more than simple habitat models. , 2005, Ecology letters.

[2]  D. Wilkinson Plant colonization: are wind dispersed seeds really dispersed by birds at larger spatial and temporal scales? , 1997 .

[3]  F. I. Woodward,et al.  The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas , 2003 .

[4]  Wilfried Thuiller,et al.  BioMove – an integrated platform simulating the dynamic response of species to environmental change , 2010 .

[5]  J. Palutikof,et al.  Climate change 2007 : impacts, adaptation and vulnerability , 2001 .

[6]  S. Schneider,et al.  Fingerprints of global warming on wild animals and plants , 2003, Nature.

[7]  Richard Fox,et al.  Spatial patterns in species distributions reveal biodiversity change , 2004, Nature.

[8]  P H Harvey,et al.  THE NATAL AND BREEDING DISPERSAL OF BIRDS , 1982 .

[9]  M. Loutre,et al.  Increasing vegetation and climate gradient in Western Europe over the Last Glacial Inception (122-110 ka): data-model comparison , 2005 .

[10]  P. Barnard,et al.  Introduction. Global change and biodiversity: future challenges , 2008, Biology Letters.

[11]  J. Palutikof,et al.  Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. , 2007 .

[12]  J. Rotenberry,et al.  Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions , 2008 .

[13]  C. Graham,et al.  The ability of climate envelope models to predict the effect of climate change on species distributions , 2006 .

[14]  Jane Elith,et al.  Error and uncertainty in habitat models , 2006 .

[15]  S. Higgins,et al.  A mechanistic model for secondary seed dispersal by wind and its experimental validation , 2005 .

[16]  Damien A. Fordham,et al.  Dynamics of range margins for metapopulations under climate change , 2009, Proceedings of the Royal Society B: Biological Sciences.

[17]  F. Jiguet,et al.  An Indicator of the Impact of Climatic Change on European Bird Populations , 2009, PloS one.

[18]  Brian Huntley,et al.  Impacts of landscape structure on butterfly range expansion , 2001 .

[19]  Brian Huntley,et al.  Dynamic distribution modelling : predicting the present from the past , 2009 .

[20]  I. C. Prentice,et al.  Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model , 2003 .

[21]  E. Matthysen,et al.  A Parametric Model for Estimation of Dispersal Patterns Applied to Five Passerine Spatially Structured Populations , 2004, The American Naturalist.

[22]  B. Huntley Limitations on adaptation: Evolutionary response to climatic change? , 2007, Heredity.

[23]  T. Dawson,et al.  Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? , 2003 .

[24]  Brian Huntley,et al.  Projected impacts of climate change on a continent-wide protected area network. , 2009, Ecology letters.

[25]  Brian Huntley,et al.  Climate and the distribution of Fallopia japonica: use of an introduced species to test the predictive capacity of response surfaces , 1995 .

[26]  M. Austin Species distribution models and ecological theory: A critical assessment and some possible new approaches , 2007 .

[27]  Michael L. Cain,et al.  ARE LONG‐DISTANCE DISPERSAL EVENTS IN PLANTS USUALLY CAUSED BY NONSTANDARD MEANS OF DISPERSAL? , 2003 .

[28]  J. Diffendorfer Testing models of source-sink dynamics and balanced dispersal , 1998 .

[29]  M. McPeek,et al.  The Evolution of Dispersal in Spatially and Temporally Varying Environments , 1992, The American Naturalist.

[30]  B. Erasmus,et al.  Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. , 2009 .

[31]  S. Andelman,et al.  Protected area needs in a changing climate , 2007 .

[32]  Ken W. Smith,et al.  Performance of climate envelope models in retrodicting recent changes in bird population size from observed climatic change , 2008, Biology Letters.

[33]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[34]  Stephen R. Baillie,et al.  Patterns of natal and breeding dispersal in birds , 1998 .

[35]  Trevor Hastie,et al.  Making better biogeographical predictions of species’ distributions , 2006 .

[36]  M. Luoto,et al.  Biotic interactions improve prediction of boreal bird distributions at macro‐scales , 2007 .

[37]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[38]  José M. V. Fragoso,et al.  Forecasting Regional to Global Plant Migration in Response to Climate Change , 2005 .

[39]  W. Cramer,et al.  Special Paper: Modelling Present and Potential Future Ranges of Some European Higher Plants Using Climate Response Surfaces , 1995 .

[40]  Greg Hughes,et al.  Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions , 2006 .

[41]  B. Huntley,et al.  Potential Impacts of Climatic Change on European Breeding Birds , 2008, PloS one.

[42]  P. Catling,et al.  Models of the distribution and abundance of ground-dwelling mammals in the eucalypt forests of south-eastern New South Wales , 1998 .

[43]  J. Lawton,et al.  Making mistakes when predicting shifts in species range in response to global warming , 1998, Nature.

[44]  H. Pulliam,et al.  Sources, Sinks, and Population Regulation , 1988, The American Naturalist.

[45]  Gary Langham,et al.  Towards an Integrated Framework for Assessing the Vulnerability of Species to Climate Change , 2008, PLoS biology.

[46]  Wilfried Thuiller,et al.  Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models , 2008, Biology Letters.

[47]  James S. Clark,et al.  Why Trees Migrate So Fast: Confronting Theory with Dispersal Biology and the Paleorecord , 1998, The American Naturalist.

[48]  Mark W Schwartz,et al.  Predicting extinctions as a result of climate change. , 2006, Ecology.

[49]  M. Kearney,et al.  Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. , 2009, Ecology letters.

[50]  F I Woodward,et al.  Responses of global plant diversity capacity to changes in carbon dioxide concentration and climate. , 2008, Ecology letters.

[51]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[52]  Janneke HilleRisLambers,et al.  ESTIMATING POPULATION SPREAD: WHAT CAN WE FORECAST AND HOW WELL? , 2003 .

[53]  B. Huntley,et al.  IMPACTS OF HABITAT FRAGMENTATION AND PATCH SIZE UPON MIGRATION RATES , 2000 .

[54]  Greg Hughes,et al.  Migration rate limitations on climate change‐induced range shifts in Cape Proteaceae , 2006 .

[55]  A. Gimona,et al.  Opening the climate envelope reveals no macroscale associations with climate in European birds , 2008, Proceedings of the National Academy of Sciences.

[56]  Guthrie S. Zimmerman,et al.  Empirical support for a despotic distribution in a California spotted owl population , 2003 .

[57]  Frank Lunkeit,et al.  Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models , 2002 .

[58]  Kevin J. Gaston,et al.  The structure and dynamics of geographic ranges , 2003 .

[59]  S. Wanless,et al.  Inter-population variation in demographic parameters: a neglected subject? , 2005 .

[60]  Brian Huntley,et al.  Migration: Species' Response to Climatic Variations Caused by Changes in the Earth's Orbit , 1989 .

[61]  Monika Schwager,et al.  Limitations of population models in predicting climate change effects: a simulation study of sociable weavers in southern Africa , 2008 .

[62]  Joseph Alcamo,et al.  Baseline scenarios of global environmental change , 1996 .

[63]  Paul H. Williams,et al.  Planning for Climate Change: Identifying Minimum‐Dispersal Corridors for the Cape Proteaceae , 2005 .

[64]  L. Hannah,et al.  Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot , 2002 .

[65]  L. Hannah,et al.  Climate change‐integrated conservation strategies , 2002 .

[66]  A. Gove,et al.  Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia , 2008 .

[67]  Roger Pradel,et al.  Methods for estimating dispersal probabilities and related parameters using marked animals , 2001 .

[68]  M. Cain,et al.  Long-distance seed dispersal in plant populations. , 2000, American journal of botany.

[69]  M. Araújo,et al.  Five (or so) challenges for species distribution modelling , 2006 .

[70]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[71]  W. Sutherland,et al.  The need for evidence-based conservation. , 2004, Trends in ecology & evolution.

[72]  J. Canadell,et al.  Global and regional drivers of accelerating CO2 emissions , 2007, Proceedings of the National Academy of Sciences.

[73]  José Carlos Brito,et al.  Modelling habitat selection of Common Cranes Grus grus wintering in Portugal using multiple logistic regression , 2008 .

[74]  A. Laurila,et al.  Latitudinal countergradient variation in the common frog (Rana temporaria) development rates – evidence for local adaptation , 2003, Journal of evolutionary biology.

[75]  C. Parmesan Ecological and Evolutionary Responses to Recent Climate Change , 2006 .

[76]  J. K. Hill,et al.  Rapid responses of British butterflies to opposing forces of climate and habitat change , 2001, Nature.