Active Vibration Control of Piezolaminated Composite Plates Considering Strong Electric Field Nonlinearity

A theoretical framework is presented for modeling active vibration control of smart multilayered plates integrated with piezoceramic sensors and actuators, considering their constitutive nonlinearity under a strong electric field. The application of an electric field beyond the linear threshold limit of piezoelectric materials is often necessary to achieve high actuation authority. A recently developed efficient layerwise theory, for which the computational efficiency and accuracy have been well established for linear electromechanical response, is employed for the laminate mechanics. The nonlinear finite element model for dynamic response is developed consistently using a variational principle, considering a rotationally invariant second-order constitutive relationship for piezoelectric materials. The nonlinear system is transformed to an equivalent linear system using the feedback linearization approach, through control input transformation. The linear quadratic Gaussian controller is adopted for contro...

[1]  Edmund Pendleton,et al.  Active Aeroelastic Wing Flight Research Program: Technical Program and Model Analytical Development , 2000 .

[2]  Inderjit Chopra,et al.  Modeling and Validation of Induced Strain Actuation of Composite Coupled Plates , 1999 .

[3]  Michael I. Friswell,et al.  Implementation of a Continuous-Inextensible-Surface Piezocomposite Airfoil , 2012 .

[4]  T. Bailey,et al.  Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam , 1985 .

[5]  Santosh Kapuria,et al.  Nonaxisymmetric Exact Piezothermoelastic Solution for Laminated Cylindrical Shell , 1997 .

[6]  V. Mueller,et al.  Shear response of lead zirconate titanate piezoceramics , 1998 .

[7]  Li Lu,et al.  Nonlinear extension and bending of piezoelectric laminated plate under large applied field actuation , 2004 .

[8]  Santosh Kapuria,et al.  An efficient quadrilateral element based on improved zigzag theory for dynamic analysis of hybrid plates with electroded piezoelectric actuators and sensors , 2008 .

[9]  S. Joshi Non-linear constitutive relations for piezoceramic materials , 1992 .

[10]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[11]  Sergio Ricci,et al.  Active Aeroelastic Control Over a Multisurface Wing: Modeling and Wind-Tunnel Testing , 2007 .

[12]  J. Kirkhope,et al.  An improved discrete Kirchhoff quadrilateral thin-plate bending element , 1987 .

[13]  Laura Menini,et al.  Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators , 2003, Simul. Model. Pract. Theory.

[14]  Aleksandar Simonović,et al.  Optimal vibration control of smart composite beams with optimal size and location of piezoelectric sensing and actuation , 2013 .

[15]  Carlos A. Mota Soares,et al.  Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators , 2004 .

[16]  Peter Hagedorn,et al.  Finite element modeling of nonlinear vibration behavior of piezo-integrated structures , 2013 .

[17]  Ranjan Ganguli,et al.  Induced shear actuation of helicopter rotor blade for active twist control , 2007 .

[18]  Oluseyi O. Onawola,et al.  A Feedback Linearization Approach for Panel Flutter Suppression With Piezoelectric Actuation , 2009 .

[19]  A. J. Masys,et al.  Piezoelectric strain in lead zirconate titante ceramics as a function of electric field, frequency, and dc bias , 2003 .

[20]  Leslie E. Cross,et al.  THE EXTRINSIC NATURE OF NONLINEAR BEHAVIOR OBSERVED IN LEAD ZIRCONATE TITANATE FERROELECTRIC CERAMIC , 1991 .

[21]  S. R. Searle,et al.  On Deriving the Inverse of a Sum of Matrices , 1981 .

[22]  Liviu Librescu,et al.  Active aeroelastic control of aircraft composite wings impacted by explosive blasts , 2008 .

[23]  László P. Kollár,et al.  Shape Control of Composite Plates and Shells with Embedded Actuators. II. Desired Shape Specified , 1994 .

[24]  Hoon Cheol Park,et al.  Material nonlinear characteristics of the 3203HD PZT wafer under high electric fields , 2005 .

[25]  Aditi Chattopadhyay,et al.  Nonlinear actuation of smart composites using a coupled piezoelectric-mechanical model , 2001 .

[26]  Thomas J. Royston,et al.  Finite element formulation for composite plates with piezoceramic layers for optimal vibration control applications , 2005 .

[27]  L. Yao,et al.  Nonlinear dynamic characteristics of piezoelectric bending actuators under strong applied electric field , 2004, Journal of Microelectromechanical Systems.

[28]  J. Z. Zhu,et al.  The finite element method , 1977 .

[29]  Thomas J. Royston,et al.  Nonlinear modeling of composite plates with piezoceramic layers using finite element analysis , 2008 .

[30]  Manu Sharma,et al.  Active vibration control of a smart plate using a piezoelectric sensor–actuator pair at elevated temperatures , 2011 .

[31]  L. C. Pardini,et al.  A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures , 2006 .

[32]  Daniel J. Inman,et al.  Active modal control for smart structures , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  Mahmoud Shakeri,et al.  Active control of geometrically non-linear transient response of sandwich beams with a flexible core using piezoelectric patches , 2013 .

[34]  David J. Wagg,et al.  Nonlinear Vibration with Control , 2010 .

[35]  K. Y. Dai,et al.  Static and vibration control of composite laminates integrated with piezoelectric sensors and actuators using the radial point interpolation method , 2004 .

[36]  Sarp Adali,et al.  Active Open-Loop Control of Plates with Multiple Piezoelectric Patches via the Maximum Principle , 2014 .

[37]  Ranjan Ganguli,et al.  Helicopter vibration reduction in forward flight with induced-shear based piezoceramic actuation , 2004 .

[38]  L. E. Cross,et al.  Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields , 1999 .

[39]  Qinglei Hu,et al.  Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver , 2005 .

[40]  Santosh Kapuria,et al.  A nonlinear efficient layerwise finite element model for smart piezolaminated composites under strong applied electric field , 2013 .

[41]  Tadashige Ikeda,et al.  Active vibration control of smart plates with partially debonded multilayered PZT actuators , 2007 .

[42]  László P. Kollár,et al.  Shape Control of Composite Plates and Shells with Embedded Actuators. I. Voltages Specified , 1994 .

[43]  Guang Meng,et al.  Performance evaluation of vibration controller for piezoelectric smart structures in finite element environment , 2014 .

[44]  L. Yao,et al.  Nonlinear static characteristics of piezoelectric bending actuators under strong applied electric field , 2004 .

[45]  Inderjit Chopra,et al.  Review of State of Art of Smart Structures and Integrated Systems , 2002 .

[46]  Liyong Tong,et al.  An incremental algorithm for static shape control of smart structures with nonlinear piezoelectric actuators , 2004 .

[47]  Guang Meng,et al.  Vibration control of piezoelectric smart structures based on system identification technique: Numerical simulation and experimental study , 2006 .

[48]  P. Hagedorn,et al.  PIEZO–BEAM SYSTEMS SUBJECTED TO WEAK ELECTRIC FIELD: EXPERIMENTS AND MODELLING OF NON-LINEARITIES , 2002 .

[49]  M. Petyt,et al.  Introduction to Finite Element Vibration Analysis , 2016 .

[50]  G. M. Kulikov,et al.  Exact Geometry Piezoelectric Solid-Shell Element Based on the 7-Parameter Model , 2011 .

[51]  Harry F. Tiersten,et al.  Electroelastic equations for electroded thin plates subject to large driving voltages , 1993 .

[52]  S. Kapuria,et al.  Efficient layerwise finite element model for dynamic analysis of laminated piezoelectric beams , 2006 .

[53]  B. Houston,et al.  Modeling and measurement of nonlinear dynamic behavior in piezoelectric ceramics with application to 1-3 composites , 1998 .

[54]  K. Bathe Finite Element Procedures , 1995 .

[55]  Mao Yiqi,et al.  Nonlinear Dynamic Response and Active Control of Piezoelastic Laminated Shallow Spherical Shells with Damage , 2012 .

[56]  K. Ramesh Kumar,et al.  The optimal location of piezoelectric actuators and sensors for vibration control of plates , 2007 .

[57]  Ajit Achuthan,et al.  Shape control of coupled nonlinear piezoelectric beams , 2001 .

[58]  B. Samanta,et al.  Finite element model for active control of intelligent structures , 1996 .

[59]  Daniel J. Inman,et al.  Macro-fiber composite actuators for a swept wing unmanned aircraft , 2009, The Aeronautical Journal (1968).

[60]  Singiresu S Rao,et al.  Recent Advances in Sensing and Control of Flexible Structures Via Piezoelectric Materials Technology , 1999 .

[61]  M. C. Ray,et al.  Active damping of geometrically nonlinear vibrations of doubly curved laminated composite shells , 2011 .

[62]  Santosh Kapuria,et al.  Active vibration suppression of multilayered plates integrated with piezoelectric fiber reinforced composites using an efficient finite element model , 2010 .

[63]  David Naso,et al.  Piezoelectric self sensing actuators for high voltage excitation , 2013 .

[64]  Kenneth B. Lazarus,et al.  Induced strain actuation of isotropic and anisotropic plates , 1991 .

[65]  R. Batra,et al.  Effect of electromechanical coupling on static deformations and natural frequencies , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.