Spectral radius and Hamiltonian properties of graphs

Let be a graph with minimum degree . The spectral radius of , denoted by , is the largest eigenvalue of the adjacency matrix of . In this note, we mainly prove the following two results.(1) Let be a graph on vertices with . If , then contains a Hamilton path unless .(2) Let be a graph on vertices with . If , then contains a Hamilton cycle unless . As corollaries of our first result, two previous theorems due to Fiedler and Nikiforov and Lu et al. are obtained, respectively. Our second result refines another previous theorem of Fiedler and Nikiforov.

[1]  O. Ore Arc coverings of graphs , 1961 .

[2]  John Adrian Bondy,et al.  Large cycles in graphs , 1971, Discret. Math..

[3]  V. Chvátal On Hamilton's ideals , 1972 .

[4]  J. Bondy Variations on the Hamiltonian Theme , 1972, Canadian Mathematical Bulletin.

[5]  D. R. Woodall Sufficient Conditions for Circuits in Graphs , 1972 .

[6]  D. R. Woodall Maximal circuits of graphs. I , 1976 .

[7]  A. Kelmans On graphs with randomly deleted edges , 1981 .

[8]  Richard A. Brualdi,et al.  On the spectral radius of complementary acyclic matrices of zeros and ones , 1986 .

[9]  Bojan Mohar,et al.  A domain monotonicity theorem for graphs and Hamiltonicity , 1992, Discret. Appl. Math..

[10]  Yuan Hong,et al.  Bounds of eigenvalues of graphs , 1993, Discret. Math..

[11]  J. V. D. Heuvel,et al.  Hamilton cycles and eigenvalues of graphs , 1995 .

[12]  Yuan Hong,et al.  A Sharp Upper Bound of the Spectral Radius of Graphs , 2001, J. Comb. Theory, Ser. B.

[13]  P. Erdgs,et al.  ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS , 2002 .

[14]  Vladimir Nikiforov,et al.  Some Inequalities for the Largest Eigenvalue of a Graph , 2002, Combinatorics, Probability and Computing.

[15]  Benny Sudakov,et al.  Sparse pseudo-random graphs are Hamiltonian , 2003, J. Graph Theory.

[16]  Pei Wang,et al.  Cycles in 2-connected graphs , 2004, J. Comb. Theory, Ser. B.

[17]  Han Hyuk Cho,et al.  Remarks on Spectral Radius and Laplacian Eigenvalues of a Graph , 2005 .

[18]  Shmuel Friedland,et al.  On the First Eigenvalue of Bipartite Graphs , 2008, Electron. J. Comb..

[19]  Lihua Feng,et al.  ON THREE CONJECTURES INVOLVING THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS , 2009 .

[20]  Vladimir Nikiforov,et al.  Spectral radius and Hamiltonicity of graphs , 2009, 0903.5353.

[21]  Vladimir Nikiforov,et al.  The spectral radius of graphs without paths and cycles of specified length , 2009, 0903.5351.

[22]  Péter Csikvári On a conjecture of V. Nikiforov , 2009, Discret. Math..

[23]  Vladimir Nikiforov,et al.  More spectral bounds on the clique and independence numbers , 2007, J. Comb. Theory B.

[24]  Bo Zhou,et al.  Signless Laplacian spectral radius and Hamiltonicity , 2010 .

[25]  Steve Butler,et al.  Small Spectral Gap in the Combinatorial Laplacian Implies Hamiltonian , 2010 .

[26]  B. Wang,et al.  Proof of a conjecture on the spectral radius of C4-free graphs , 2012 .

[27]  Huiqing Liu,et al.  Spectral radius and Hamiltonian graphs , 2012 .

[28]  B. Wang,et al.  ON THE SPECTRAL RADII OF GRAPHS WITHOUT GIVEN CYCLES , 2012 .

[29]  Shinya Fujita,et al.  Revisit of Erdős-Gallai's theorem on the circumference of a graph , 2013, Inf. Process. Lett..

[30]  Binlong Li,et al.  Spectral radius and traceability of connected claw-free graphs , 2014, 1406.5404.

[31]  Binlong Li,et al.  Spectral analogues of Erdős’ and Moon–Moser’s theorems on Hamilton cycles , 2015, 1504.03556.

[32]  Vladimir Nikiforov,et al.  Spectral radius and Hamiltonicity of graphs with large minimum degree , 2016, Czechoslovak Mathematical Journal.

[33]  Jun Ge,et al.  Spectral radius and Hamiltonicity of graphs with large minimum degree: revisited , 2016 .

[34]  Binlong Li,et al.  Spectral analogues of Moon–Moser's theorem on Hamilton paths in bipartite graphs , 2017 .

[35]  P Erdős (1) 15* Remarks on a Paper of Pósa , .