Shadow Information Spaces: Combinatorial Filters for Tracking Targets

This paper introduces and solves a problem of maintaining the distribution of hidden targets that move outside the field of view while a sensor sweep is being performed, resulting in a generalization of the sensing aspect of visibility-based pursuit-evasion games. Our solution first applies information space concepts to significantly reduce the general complexity so that information is processed only when the shadow region (all points invisible to the sensors) changes combinatorially or targets pass in and out of the field of view. The cases of distinguishable, partially distinguishable, and completely indistinguishable targets are handled. Depending on whether the targets move nondeterministically or probabilistically, more specific classes of problems are formulated. For each case, efficient filtering algorithms are introduced, implemented, and demonstrated that provide critical information for tasks such as counting, herding, pursuit evasion, and situational awareness.

[1]  Y. Yavin,et al.  Simple-motion pursuit-evasion differential games, part 2: Optimal evasion from proportional navigation guidance in the deterministic and stochastic cases , 1986 .

[2]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[3]  Steven M. LaValle,et al.  Visibility-based Pursuit—Evasion with Bounded Speed , 2008, Int. J. Robotics Res..

[4]  Sebastian Thrun,et al.  Visibility-based Pursuit-evasion with Limited Field of View , 2004, Int. J. Robotics Res..

[5]  T. C. Shermer,et al.  Recent results in art galleries (geometry) , 1992, Proc. IEEE.

[6]  Steven M. LaValle,et al.  Visibility-Based Pursuit-Evasion in an Unknown Planar Environment , 2004, Int. J. Robotics Res..

[7]  Leonidas J. Guibas,et al.  A Visibility-Based Pursuit-Evasion Problem , 1999, Int. J. Comput. Geom. Appl..

[8]  Giora Slutzki,et al.  Pursuit-evasion using beam detection , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[10]  Fred Cohen,et al.  Sensor Beams, Obstacles, and Possible Paths , 2008, WAFR.

[11]  Rufus Isaacs,et al.  Differential Games , 1965 .

[12]  Kyung-Yong Chwa,et al.  Visibility-Based Pursuit-Evasion in a Polygonal Region by a Searcher , 2001, ICALP.

[13]  L. Stone Theory of Optimal Search , 1975 .

[14]  T. Shermer Recent Results in Art Galleries , 1992 .

[15]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[16]  Subhash Suri,et al.  Counting Targets with Mobile Sensors in an Unknown Environment , 2007, ALGOSENSORS.

[17]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[18]  Vladimir Turetsky Upper Bounds of the Pursuer Control Based on a Linear-Quadratic Differential Game , 2004 .

[19]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[20]  Mohammad Ghodsi,et al.  α-Visibility , 2012, Comput. Geom..

[21]  Steven M. LaValle,et al.  Distance-Optimal Navigation in an Unknown Environment Without Sensing Distances , 2007, IEEE Transactions on Robotics.

[22]  Paul E. Berry,et al.  Optimal Search, Location and Tracking of Surface Maritime Targets by a Constellation of Surveillance Satellites , 2003 .

[23]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[24]  David J. Kriegman,et al.  Computing exact aspect graphs of curved objects: Algebraic surfaces , 1990, International Journal of Computer Vision.

[25]  Hugh F. Durrant-Whyte,et al.  A time-optimal control strategy for pursuit-evasion games problems , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[26]  Steven M. LaValle,et al.  Tracking hidden agents through shadow information spaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[27]  Prosenjit Bose,et al.  Efficient visibility queries in simple polygons , 2002, Comput. Geom..

[28]  Sampath Kannan,et al.  Randomized pursuit-evasion in a polygonal environment , 2005, IEEE Transactions on Robotics.

[29]  S. Shankar Sastry,et al.  Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation , 2002, IEEE Trans. Robotics Autom..

[30]  Edward M. Reingold,et al.  "Lion and Man": Upper and Lower Bounds , 1992, INFORMS J. Comput..

[31]  Masafumi Yamashita,et al.  Online polygon search by a seven-state boundary 1-searcher , 2006, IEEE Transactions on Robotics.

[32]  Wei-Pand Chin,et al.  Shortest watchman routes in simple polygons , 1990, Discret. Comput. Geom..

[33]  Leonidas J. Guibas,et al.  Visibility-Based Pursuit-Evasion in a Polygonal Environment , 1997, WADS.

[34]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[35]  G. L. Blankenship,et al.  Numerical methods in search path planning , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[36]  Leonidas J. Guibas,et al.  Counting people in crowds with a real-time network of simple image sensors , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[37]  Y. Ho,et al.  Differential games and optimal pursuit-evasion strategies , 1965 .

[38]  Michel Pocchiola,et al.  The visibility complex , 1993, SCG '93.

[39]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[40]  Richard Bishop,et al.  Pursuit and Evasion in Non-convex Domains of Arbitrary Dimensions , 2006, Robotics: Science and Systems.

[41]  Steven M. LaValle,et al.  Visibility-based pursuit-evasion: the case of curved environments , 2001, IEEE Trans. Robotics Autom..

[42]  Simeon C. Ntafos,et al.  Optimum watchman routes , 1986, SCG '86.

[43]  Leonidas J. Guibas,et al.  Finding an unpredictable target in a workspace with obstacles , 1997, Proceedings of International Conference on Robotics and Automation.

[44]  Steven M. LaValle,et al.  Probabilistic shadow information spaces , 2010, 2010 IEEE International Conference on Robotics and Automation.

[45]  T. D. Parsons,et al.  Pursuit-evasion in a graph , 1978 .

[46]  J. Singh,et al.  Tracking Multiple Targets Using Binary Proximity Sensors , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[47]  R. Mahler Objective Functions for Bayesian Control-Theoretic Sensor Management, II: MНC-Like Approximation , 2004 .

[48]  Hugh F. Durrant-Whyte,et al.  Coordinated decentralized search for a lost target in a Bayesian world , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[49]  Yuliy Baryshnikov,et al.  Target Enumeration via Euler Characteristic Integrals , 2009, SIAM J. Appl. Math..

[50]  João Pedro Hespanha,et al.  On Discrete-Time Pursuit-Evasion Games With Sensing Limitations , 2008, IEEE Transactions on Robotics.

[51]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[52]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization, Mapping and Moving Object Tracking , 2007, Int. J. Robotics Res..

[53]  Jirí Sgall Solution of David Gale's lion and man problem , 2001, Theor. Comput. Sci..

[54]  Chinya V. Ravishankar,et al.  A framework for pursuit evasion games in Rn , 2005, Inf. Process. Lett..

[55]  Masafumi Yamashita,et al.  Searching for a Mobile Intruder in a Polygonal Region , 1992, SIAM J. Comput..