Surface oxides of Ir(111) prepared by gas-phase oxygen atoms

[1]  G. Somorjai,et al.  In situ oxidation study of Pt(110) and its interaction with CO. , 2011, Journal of the American Chemical Society.

[2]  D. Miller,et al.  Oxidation of Pt(111) under near-ambient conditions. , 2011, Physical review letters.

[3]  I. Shvets,et al.  Self-limited growth of triangular PtO2 nanoclusters on the Pt(111) surface , 2010, Nanotechnology.

[4]  Yaw-Wen Yang,et al.  Deoxygenation of IrO2(1 1 0) surface: Core-level spectroscopy and density functional theory calculation , 2010 .

[5]  S. Kim,et al.  Morphology of RuO2(110) oxide films on Ru(0001) studied by scanning tunneling microscopy. , 2009, The Journal of chemical physics.

[6]  J. Weaver,et al.  STM study of high-coverage structures of atomic oxygen on Pt(1 1 1): p(2 × 1) and Pt oxide chain structures , 2008 .

[7]  A. Stierle,et al.  Oxidation of Ir(111): From O-Ir-O trilayer to bulk oxide formation , 2008 .

[8]  D. Su,et al.  “Ir-in-ceria”: A highly selective catalyst for preferential CO oxidation , 2008 .

[9]  A. Stierle,et al.  Atmospheric pressure oxidation of Pt(111) , 2008 .

[10]  C. J. Weststrate,et al.  Methanol decomposition and oxidation on Ir(111) , 2007 .

[11]  J. Wintterlin,et al.  Scanning tunneling microscopy of the RuO2(110) surface at ambient oxygen pressure , 2007 .

[12]  B. Hammer,et al.  Structure and activity of oxidized Pt(110) and α-PtO2 , 2006 .

[13]  J. G. Wang,et al.  One-dimensional PtO2 at Pt steps: formation and reaction with CO. , 2005, Physical review letters.

[14]  J. Weaver,et al.  Oxidation of Pt(1 1 1) by gas-phase oxygen atoms , 2005 .

[15]  M. Kiskinova,et al.  Identification of subsurface oxygen species created during oxidation of Ru(0001). , 2005, The journal of physical chemistry. B.

[16]  C. J. Weststrate,et al.  The role of Oad in the decomposition of NH3 adsorbed on Ir(110): a combined TPD and high-energy resolution fast XPS study. , 2005, Physical Chemistry, Chemical Physics - PCCP.

[17]  F. Besenbacher,et al.  Oxidation of Pt(110). , 2004, Physical review letters.

[18]  D. King,et al.  Car exhaust catalysis from first principles: selective NO reduction under excess O2 conditions on Ir. , 2004, Journal of the American Chemical Society.

[19]  J. Gustafson,et al.  Self-limited growth of a thin oxide layer on Rh(111). , 2004, Physical review letters.

[20]  E. Lundgren,et al.  Visualization of atomic processes on ruthenium dioxide using scanning tunneling microscopy. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  H. Over,et al.  The role of weakly bound on-top oxygen in the catalytic CO oxidation reaction over RuO2(110). , 2004, Journal of the American Chemical Society.

[22]  M. Walker,et al.  Reaction of atomic oxygen with a Pt(1 1 1) surface: chemical and structural determination using XPS, CAICISS and LEED , 2003 .

[23]  E. Lundgren,et al.  Experimental and simulated STM images of stoichiometric and partially reduced RuO2(110) surfaces including adsorbates , 2002 .

[24]  A. Seitsonen,et al.  Complex redox chemistry on the RuO2(110) surface: experiment and theory , 2002 .

[25]  H. Conrad,et al.  Thermal rearrangement of oxygen adsorbed on oxygen-rich Ru(0001). , 2001 .

[26]  M. Scheffler,et al.  Surface Core-Level Shifts at an oxygen-rich Ru Surface: O/Ru(0001) vs. RuO2(110) , 2001, cond-mat/0104306.

[27]  G. Ertl,et al.  Characterization of Various Oxygen Species on an Oxide Surface: RuO2(110) † , 2001 .

[28]  A. Seitsonen,et al.  Epitaxial growth of RuO2(100) on Ru(10-10): Surface structure and other properties , 2001 .

[29]  Varga,et al.  Atomic-scale structure and catalytic reactivity of the RuO(2)(110) surface , 2000, Science.

[30]  A. Böttcher,et al.  Oxygen adsorbed on oxidized Ru(0001) , 1999 .

[31]  N. Saliba,et al.  Oxidation of Pt (111) by ozone (O3) under UHV conditions , 1999 .

[32]  N. R. Avery,et al.  Adsorption of N2, O2, N2O and NO on Ir(111) by EELS and TPD , 1990 .

[33]  K. Kostov,et al.  Interaction of oxygen with a clean Ir(111) surface , 1987 .

[34]  F. Himpsel,et al.  Structure-Dependent 4f-Core-Level Binding Energies for Surface Atoms on Ir(111), Ir(100)-(5×1), AND METASTABLE Ir(100)-(1×1) , 1980 .

[35]  W. H. Weinberg,et al.  Low‐energy electron diffraction structural analysis of the (2×2) oxygen overlayer on the iridium (111) surface , 1979 .

[36]  W. H. Weinberg,et al.  The chemisorption of oxygen on the (110) surface of iridium , 1979 .

[37]  A. Plagge,et al.  Oxidation of Ir(111) surfaces; a combined LEED/UPS study , 1977 .

[38]  V. P. Ivanov,et al.  The chemisorption of oxygen on the iridium (111) surface , 1976 .

[39]  W. H. Weinberg,et al.  An XPS investigation of the chemisorption of oxygen on the iridium (111) surface , 1976 .

[40]  G. Rovida,et al.  Low-energy electron diffraction, Auger electron spectroscopy, and thermal desorption studies of chemisorbed CO and O2 on the (111) and stepped [6(111) × (100)] iridium surfaces , 1976 .

[41]  A. Plagge,et al.  Interaction of CO and O2 with Ir(111) surfaces , 1976 .