The Neumann numerical boundary condition for transport equations

In this article, we show that prescribing homogeneous Neumann type numerical boundary conditions at an outflow boundary yields a convergent discretization in $\ell^\infty$ for transport equations. We show in particular that the Neumann numerical boundary condition is a stable, local, and absorbing numerical boundary condition for discretized transport equations. Our main result is proved for explicit two time level numerical approximations of transport operators with arbitrarily wide stencils. The proof is based on the energy method and bypasses any normal mode analysis.

[1]  L. Trefethen Instability of difference models for hyperbolic initial boundary value problems , 1984 .

[2]  B. Baishanski,et al.  Norms of powers of absolutely convergent fourier series , 1998 .

[3]  Claire Chainais-Hillairet,et al.  NUMERICAL BOUNDARY LAYERS FOR HYPERBOLIC SYSTEMS IN 1-D , 2001 .

[4]  H. Kreiss,et al.  Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II , 1972 .

[5]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[6]  H. Kreiss,et al.  On Difference Approximations with Wrong Boundary Values , 1968 .

[7]  E. Tadmor,et al.  Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II , 1978 .

[8]  Heinz-Otto Kreiss,et al.  Difference approximations for hyperbolic differential equations , 1966 .

[9]  Benjamin Boutin,et al.  Stability of finite difference schemes for hyperbolic initial boundary value problems: numerical boundary layers , 2015 .

[10]  Vidar Thomée,et al.  Stability of difference schemes in the maximum-norm☆ , 1965 .

[11]  Christophe Besse,et al.  A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations , 2008 .

[12]  Antoine Gloria,et al.  Semigroup stability of finite difference schemes for multidimensional hyperbolic initial-boundary value problems , 2010, Math. Comput..

[13]  R. Higdon Radiation boundary conditions for dispersive waves , 1994 .

[14]  Laurence Halpern,et al.  Absorbing boundary conditions for the discretization schemes of the one-dimensional wave equation , 1982 .

[15]  The semigroup stability of the difference approximations for initial-boundary value problems , 1995 .

[16]  G. Strang Trigonometric Polynomials and Difference Methods of Maximum Accuracy , 1962 .

[17]  Jean-François Coulombel,et al.  Transparent numerical boundary conditions for evolution equations: Derivation and stability analysis , 2016, Annales de la faculté des sciences de Toulouse Mathématiques.

[18]  Eitan Tadmor,et al.  Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II , 1978 .

[19]  Moshe Goldberg On a boundary extrapolation theorem by Kreiss , 1977 .

[20]  Jean-François Coulombel,et al.  Stability of Finite Difference Schemes for Hyperbolic Initial Boundary Value Problems , 2009, SIAM J. Numer. Anal..

[21]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[22]  Systems of difference equations with general homogeneous boundary conditions , 1969 .

[23]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[24]  L. Trefethen Spectra and pseudospectra , 2005 .

[25]  R. Higdon Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation , 1986 .

[26]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[27]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[28]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[29]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .