Interfacial nanoarchitectonics for molecular manipulation and molecular machine operation

Abstract The nanoarchitectonics concept enables us to produce functional systems and materials from nanoscale units through nanotechnological approaches together with the processes including chemical syntheses, atom/molecule manipulations, self-assemblies, self-organizations, field-induced material regulations, and bio-related processes. Especially, manipulations of molecules (molecular machines) and sophisticated organization would be attractive targets in interfacial nanoarchitectonics. In this short review, we introduce several typical examples on manipulations of functional molecules and molecular machines at interfacial media. The examples are classified roughly according to driving forces of manipulations; (i) manipulations through chemical reactions and interactions; (ii) light-driven manipulations; (iii) electrically controlled manipulations; (iv) mechanical manipulations. Future possibilities of molecular manipulations at interfaces such as usages in biological systems are discussed in perspective section.

[1]  Satyaprasad P. Senanayak,et al.  Nanoarchitectonics of Small Molecule and DNA for Ultrasensitive Detection of Mercury. , 2016, ACS applied materials & interfaces.

[2]  Katsuhiko Ariga,et al.  Soft 2D nanoarchitectonics , 2018, NPG Asia Materials.

[3]  Junbai Li,et al.  Langmuir Nanoarchitectonics from Basic to Frontier. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[4]  Jean-Pierre Sauvage,et al.  From Chemical Topology to Molecular Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[5]  Katsuhiko Ariga,et al.  Current-Driven Supramolecular Motor with In Situ Surface Chiral Directionality Switching. , 2015, Nano letters.

[6]  Hiroshi Ito,et al.  Molecular recognition: from solution science to nano/materials technology. , 2012, Chemical Society reviews.

[7]  Katsuhiko Ariga,et al.  25th Anniversary Article: What Can Be Done with the Langmuir‐Blodgett Method? Recent Developments and its Critical Role in Materials Science , 2013, Advanced materials.

[8]  M. Aono,et al.  Forming nanomaterials as layered functional structures toward materials nanoarchitectonics , 2012 .

[9]  Katsuhiko Ariga,et al.  Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future , 2015 .

[10]  Katsuhiko Ariga,et al.  Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information , 2018, Bulletin of the Chemical Society of Japan.

[11]  M. Allendorf,et al.  An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. , 2017, Chemical Society reviews.

[12]  Katsuhiko Ariga,et al.  Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. , 2011, Journal of nanoscience and nanotechnology.

[13]  Qianli Zou,et al.  Self-Assembling Peptide-Based Nanoarchitectonics , 2019, Bulletin of the Chemical Society of Japan.

[14]  Katsuhiko Ariga,et al.  Interfaces Working for Biology: Solving Biological Mysteries and Opening Up Future Nanoarchitectonics , 2016 .

[15]  Katsuhiko Ariga,et al.  Two-dimensional nanoarchitectonics based on self-assembly. , 2010, Advances in colloid and interface science.

[16]  Katsuhiko Ariga,et al.  Mechanical Control of Nanomaterials and Nanosystems , 2012, Advanced materials.

[17]  K. Ariga,et al.  Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. , 2017, Physical chemistry chemical physics : PCCP.

[18]  T. Kondo,et al.  Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts , 2016, Science.

[19]  Wesley R. Browne,et al.  Control of surface wettability using tripodal light-activated molecular motors. , 2014, Journal of the American Chemical Society.

[20]  Timothy R. Cook,et al.  Formation of Halogen Bond-Based 2D Supramolecular Assemblies by Electric Manipulation. , 2015, Journal of the American Chemical Society.

[21]  Katsuhiko Ariga,et al.  Soft material nanoarchitectonics at interfaces: molecular assembly, nanomaterial synthesis, and life control , 2019, Molecular Systems Design & Engineering.

[22]  O. Rojas,et al.  Behavior of nanocelluloses at interfaces , 2017 .

[23]  M. Komiyama,et al.  Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics , 2017 .

[24]  Tsutomu Miyasaka,et al.  Lead Halide Perovskites in Thin Film Photovoltaics: Background and Perspectives , 2018, Bulletin of the Chemical Society of Japan.

[25]  G. Cavallaro,et al.  An assembly of organic-inorganic composites using halloysite clay nanotubes , 2018 .

[26]  Katsuhiko Ariga,et al.  Molecular Recognition of Nucleotides by the Guanidinium Unit at the Surface of Aqueous Micelles and Bilayers. A Comparison of Microscopic and Macroscopic Interfaces , 1996 .

[27]  Katsuhiko Ariga,et al.  A mechanically controlled indicator displacement assay. , 2012, Angewandte Chemie.

[28]  Abdullah M. Asiri,et al.  MnO 2 -CoP 3 nanowires array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity , 2018 .

[29]  Katsuhiko Ariga,et al.  Mechanically Induced Opening-Closing Action of Binaphthyl Molecular Pliers: Digital Phase Transition versus Continuous Conformational Change. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  Yue Cui,et al.  Motor Protein CF0F1 Reconstituted in Lipid‐Coated Hemoglobin Microcapsules for ATP Synthesis , 2008 .

[31]  Jean-Marie Lehn,et al.  Supramolecular chemistry — Scope and perspectives: Molecules — Supermolecules — Molecular devices , 1988 .

[32]  N. Chatani,et al.  The Use of a Rhodium Catalyst/8-Aminoquinoline Directing Group in the C-H Alkylation of Aromatic Amides with Alkenes: Possible Generation of a Carbene Intermediate from an Alkene , 2017 .

[33]  Katsuhiko Ariga,et al.  Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. , 2014, Physical chemistry chemical physics : PCCP.

[34]  Seiji Shinkai,et al.  Photoresponsive crown ethers. Part 6. Ion transport mediated by photoinduced cis—trans interconversion of azobis(benzocrown ethers) , 1982 .

[35]  Jacob T. Robinson,et al.  Molecular machines open cell membranes , 2017, Nature.

[36]  Li Yu,et al.  Reprogrammable Assembly of Molecular Motor on Solid Surfaces via Dynamic Bonds. , 2017, Small.

[37]  Katsuhiko Ariga,et al.  Nanoarchitectonics for Hybrid and Related Materials for Bio‐Oriented Applications , 2018 .

[38]  Charles J. Pedersen,et al.  The Discovery of Crown Ethers (Noble Lecture) , 1988 .

[39]  Katsuhiko Ariga,et al.  Mechanochemical Tuning of the Binaphthyl Conformation at the Air-Water Interface. , 2015, Angewandte Chemie.

[40]  Katsuhiko Ariga,et al.  Molecular rotors confined at an ordered 2D interface. , 2018, Physical chemistry chemical physics : PCCP.

[41]  Stefan Hecht,et al.  Welding, organizing, and planting organic molecules on substrate surfaces--promising approaches towards nanoarchitectonics from the bottom up. , 2003, Angewandte Chemie.

[42]  Forces between Colloidal Particles in Aqueous Solutions Containing Monovalent and Multivalent Ions , 2016, 1606.00266.

[43]  Katsuhiko Ariga,et al.  Materials nanoarchitectonics for environmental remediation and sensing , 2012 .

[44]  Katsuhiko Ariga,et al.  Mechanical control of enantioselectivity of amino acid recognition by cholesterol-armed cyclen monolayer at the air-water interface. , 2006, Journal of the American Chemical Society.

[45]  Shao Sian Li,et al.  Light and Matter Interaction in Two-Dimensional Atomically Thin Films , 2018 .

[46]  J. Barth,et al.  Orthogonal insertion of lanthanide and transition-metal atoms in metal-organic networks on surfaces. , 2015, Angewandte Chemie.

[47]  Katsuhiko Ariga,et al.  Nanoarchitectonics for Dynamic Functional Materials from Atomic‐/Molecular‐Level Manipulation to Macroscopic Action , 2016, Advanced materials.

[48]  Katsuhiko Ariga,et al.  What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology , 2016 .

[49]  Katsuhiko Ariga,et al.  Piezoluminescence Based on Molecular Recognition by Dynamic Cavity Array of Steroid Cyclophanes at the Air−Water Interface , 2000 .

[50]  Masakazu Aono,et al.  Nanoarchitectonics: a new materials horizon for nanotechnology , 2015 .

[51]  Katsuhiko Ariga,et al.  Bridging the Difference to the Billionth-of-a-Meter Length Scale: How to Operate Nanoscopic Machines and Nanomaterials by Using Macroscopic Actions , 2014 .

[52]  Matsuhiko Nishizawa,et al.  Soft, Wet and Ionic Microelectrode Systems , 2018, Bulletin of the Chemical Society of Japan.

[53]  M B Avinash,et al.  Two-dimensional nanoarchitectonics: organic and hybrid materials. , 2012, Nanoscale.

[54]  J. Tour,et al.  Light-Induced Translation of Motorized Molecules on a Surface. , 2016, ACS nano.

[55]  Katsuhiko Ariga,et al.  Piezoluminescence at the air-water interface through dynamic molecular recognition driven by lateral pressure application. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[56]  Joseph S. Elias,et al.  Conductive MOF electrodes for stable supercapacitors with high areal capacitance. , 2017, Nature materials.

[57]  Katsuhiko Ariga,et al.  Molecular Recognition at Air−Water and Related Interfaces: Complementary Hydrogen Bonding and Multisite Interaction , 1998 .

[58]  Donald J. Cram The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture)† , 1988 .

[59]  Takeshi Morikawa,et al.  Highly Enhanced Electrochemical Water Oxidation Reaction over Hyperfine β-FeOOH(Cl):Ni Nanorod Electrode by Modification with Amorphous Ni(OH)2 , 2018 .

[60]  Supramolecularly Assembled Nanocomposites as Biomimetic Chloroplasts for Enhancement of Photophosphorylation. , 2018, Angewandte Chemie.

[61]  Jean G. Riess,et al.  Self-Organization of Semifluorinated Alkanes and Related Compounds at Interfaces: Thin Films, Surface Domains and Two-Dimensional Spherulites , 2018 .

[62]  Teruo Okano,et al.  Design of Temperature-Responsive Polymer-Grafted Surfaces for Cell Sheet Preparation and Manipulation , 2019, Bulletin of the Chemical Society of Japan.

[63]  Masakazu Aono,et al.  The Way to Nanoarchitectonics and the Way of Nanoarchitectonics , 2016, Advanced materials.

[64]  Raghava Reddy Kakarla,et al.  Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes , 2017 .

[65]  Katsuhiko Ariga,et al.  Mechanical tuning of molecular recognition to discriminate the single-methyl-group difference between thymine and uracil. , 2010, Journal of the American Chemical Society.

[66]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[67]  Katsuhiko Ariga,et al.  Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. , 2010, Angewandte Chemie.

[68]  V. N. Paunov,et al.  Fabrication of living cellosomes of rod-like and rhombohedral morphologies based on magnetically responsive templates. , 2009, Chemical communications.

[69]  Katsuhiko Ariga,et al.  Bioactive nanocarbon assemblies: Nanoarchitectonics and applications , 2014 .

[70]  Masayuki Suda,et al.  A New Photo-Control Method for Organic–Inorganic Interface Dipoles and Its Application to Photo-Controllable Molecular Devices , 2018 .

[71]  Robin H. A. Ras,et al.  Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling , 2018, Current Opinion in Colloid & Interface Science.

[72]  Katsuhiko Ariga,et al.  Enzyme nanoarchitectonics: organization and device application. , 2013, Chemical Society reviews.

[73]  Katsuhiko Ariga,et al.  Self-assembly as a key player for materials nanoarchitectonics , 2019, Science and technology of advanced materials.

[74]  K. Kern,et al.  Local conformational switching of supramolecular networks at the solid/liquid interface. , 2015, ACS nano.

[75]  K. Fukui Development of Local Analysis Technique of Electric Double Layer at Electrode Interfaces and Its Application to Ionic Liquid Interfaces , 2018, Bulletin of the Chemical Society of Japan.

[76]  H. Möhwald,et al.  Movement of polymer microcarriers using a biomolecular motor. , 2010, Biomaterials.

[77]  Katsuhiko Ariga,et al.  Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications , 2017 .

[78]  Katsuhiko Ariga,et al.  Catalytic nanoarchitectonics for environmentally compatible energy generation , 2016 .

[79]  Katsuhiko Ariga,et al.  Dynamic nanoarchitectonics: Supramolecular polymorphism and differentiation, shape-shifter and hand-operating nanotechnology , 2018 .

[80]  Omar Azzaroni,et al.  Practical use of polymer brushes in sustainable energy applications: interfacial nanoarchitectonics for high-efficiency devices. , 2019, Chemical Society reviews.

[81]  Katsuhiko Ariga,et al.  Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. , 2013, Physical chemistry chemical physics : PCCP.

[82]  Klaus Kern,et al.  Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts. , 2016, Journal of the American Chemical Society.

[83]  S. De Feyter,et al.  Nanoscale Control over the Mixing Behavior of Surface-Confined Bicomponent Supramolecular Networks Using an Oriented External Electric Field , 2017, ACS nano.

[84]  Katsuhiko Ariga,et al.  Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. , 2010, Angewandte Chemie.

[85]  T. Schimmel,et al.  Mechanically Induced Switching of Molecular Layers. , 2019, Nano letters.

[86]  T. Seki,et al.  A Wide Array of Photoinduced Motions in Molecular and Macromolecular Assemblies at Interfaces , 2018, Bulletin of the Chemical Society of Japan.

[87]  Katsuhiko Ariga,et al.  Redox-Active Polymers for Energy Storage Nanoarchitectonics , 2017 .

[88]  Hojae Lee,et al.  Turning Diamagnetic Microbes into Multinary Micro-Magnets: Magnetophoresis and Spatio-Temporal Manipulation of Individual Living Cells , 2016, Scientific Reports.

[89]  Hirokazu Kobayashi,et al.  Development of Solid Catalyst–Solid Substrate Reactions for Efficient Utilization of Biomass , 2018 .

[90]  Seiji Shinkai,et al.  Photocontrolled extraction ability of azobenzene-bridged azacrown ether , 1979 .

[91]  Itaru Honma,et al.  Biocompatible Batteries—Materials and Chemistry, Fabrication, Applications, and Future Prospects , 2018 .

[92]  Y. Yamauchi,et al.  Nanoarchitectonics: A New Materials Horizon for Prussian Blue and Its Analogues , 2019, Bulletin of the Chemical Society of Japan.

[93]  J. Fraser Stoddart,et al.  Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[94]  Masahiro Irie,et al.  Photoswitchable Turn-on Mode Fluorescent Diarylethenes: Strategies for Controlling the Switching Response , 2017 .

[95]  Katsuhiko Ariga,et al.  Interfacial nanoarchitectonics: lateral and vertical, static and dynamic. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[96]  Youyong Li,et al.  Surface-Controlled Mono/Diselective ortho C-H Bond Activation. , 2016, Journal of the American Chemical Society.

[97]  C. Joachim,et al.  Single-Molecule Rotational Switch on a Dangling Bond Dimer Bearing. , 2016, ACS nano.

[98]  Thomas M. McCoy,et al.  Physicochemical and Biological Characterisation of Azobenzene-Containing Photoswitchable Surfactants , 2018, Bulletin of the Chemical Society of Japan.

[99]  Katsuhiko Ariga,et al.  Nanoarchitectonics: a navigator from materials to life , 2017 .

[100]  Katsuhiko Ariga,et al.  Conformation Manipulation and Motion of a Double Paddle Molecule on an Au(111) Surface. , 2017, ACS nano.

[101]  Katsuhiko Ariga,et al.  Dynamic Control of Intramolecular Rotation by Tuning the Surrounding Two-Dimensional Matrix Field. , 2019, ACS nano.

[102]  M. Wolf,et al.  Direct Observation of Photoinduced Tautomerization in Single Molecules at a Metal Surface. , 2016, Nano letters.

[103]  Ben L Feringa,et al.  The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). , 2017, Angewandte Chemie.

[104]  Katsuhiko Ariga,et al.  Materials Nanoarchitectonics as Cell Regulators , 2019, ChemNanoMat.