Synthesis of new 8-arylisoquinoline derivatives by application of palladium-catalyzed Suzuki cross-coupling reactions

[1]  E. Sudhölter,et al.  Aggregation of different amino acid conjugates of cholic acid in aqueous solution , 2003 .

[2]  R. Mailman,et al.  Synthesis and pharmacological evaluation of substituted naphth[1,2,3-de]isoquinolines (dinapsoline analogues) as D1 and D2 dopamine receptor ligands. , 2003, Bioorganic & medicinal chemistry.

[3]  J. Mckenna,et al.  The scope and limitations of the Suzuki–Miyaura cross-coupling reactions of 6- and 8-substituted 1,2,3,4-tetrahydroisoquinoline-3-carboxylates , 2001 .

[4]  A. Baba,et al.  Novel Synthetic Usage of Indium Compounds as Catalyst: Reductive Deoxygenation of Aryl Ketones and sec-Benzylic Alcohols , 1999 .

[5]  F. Tarazi,et al.  Long-Term Effects of S(+)N-n-Propylnorapomorphine Compared with Typical and Atypical Antipsychotics: Differential Increases of Cerebrocortical D2-Like and Striatolimbic D4-Like Dopamine Receptors , 1997, Neuropsychopharmacology.

[6]  S. Hjorth,et al.  11-substituted (R)-aporphines: synthesis, pharmacology, and modeling of D2A and 5-HT1A receptor interactions. , 1996, Journal of medicinal chemistry.

[7]  G. Stokker Preparation of 1,2,3,4-tetrahydroisoquinolines lacking electron donating groups — An intramolecular cyclization complementary to the Pictet-Spengler reaction , 1996 .

[8]  Alan R. Katritzky,et al.  Comprehensive Heterocyclic Chemistry IV , 1996 .

[9]  S. Hjorth,et al.  (R)-11-hydroxy- and (R)-11-hydroxy-10-methylaporphine: synthesis, pharmacology, and modeling of D2A and 5-HT1A receptor interactions. , 1995, Journal of medicinal chemistry.

[10]  R. Baldessarini,et al.  Receptor affinities of aporphine enantiomers in rat brain tissue. , 1994, European journal of pharmacology.

[11]  J. P. Long,et al.  Enantiomers of 11-hydroxy-10-methylaporphine having opposing pharmacological effects at 5-HT1A receptors. , 1991, Chirality.

[12]  C. Thompson,et al.  Synthesis, configuration, and chemical shift correlations of chiral 1,3,2-oxazaphospholidin-2-ones derived from l-serine , 1990 .

[13]  Y. Iitaka,et al.  Studies on tetrahydroisoquinolines. XXX: A synthesis of mixed tetrahydroisoquinoline dimers via p-quinol acetates , 1988 .

[14]  J. P. Long,et al.  (R)-(-)-10-methyl-11-hydroxyaporphine: a highly selective serotonergic agonist. , 1988, Journal of medicinal chemistry.

[15]  M. Zenk,et al.  The Chemistry and Biology of Isoquinoline Alkaloids , 2011, Proceedings in Life Sciences.

[16]  J G Cannon,et al.  Dopamine agonists: structure-activity relationships. , 1985, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[17]  J. Kebabian,et al.  Aporphine enantiomers. Interactions with D-1 and D-2 dopamine receptors. , 1984, Molecular pharmacology.

[18]  M. Leboeuf,et al.  Aporphinoid Alkaloids, V , 1983 .

[19]  H. Hara,et al.  Studies on tetrahydroisoquinolines. XVII. A synthesis of 8-halo-1,2,3,4-tetrahydroisoquinolines. , 1981 .

[20]  L. N. Pridgen Versatile and efficient synthesis of aryl‐1,2,3,4‐tetrahydroisoquinolines: Nickel(II) phosphine ligand catalyzed coupling of arylmagnesium halides to haloisoquinolines , 1980 .

[21]  A. Miller,et al.  Synthesis of 8-aryltetrahydroisoquinolines as dopamine antagonists and evaluation for potential neuroleptic activity. , 1980, Journal of medicinal chemistry.

[22]  W. Mendelson,et al.  Intramolecular friedel-crafts alkylations. II. An efficient synthesis of biologically active 1,2,3,4-tetrahydroisoquinolines☆ , 1980 .

[23]  C. R. Ellefson Synthesis of 8-phenyl-1,2,3,4-tetrahydroisoquinolines , 1979 .

[24]  G. Di Chiara,et al.  Pharmacology and neurochemistry of apomorphine. , 1978, Advances in pharmacology and chemotherapy.

[25]  J. Leysen,et al.  Apomorphine: chemistry, pharmacology, biochemistry. , 1976, International review of neurobiology.

[26]  K. W. Bentley The isoquinoline alkaloids , 1971 .

[27]  G. M. Badger,et al.  The chemistry of heterocyclic compounds , 1961 .