On the continuous-time limit of the Barabási-Albert random graph

We prove that the Barab\'asi-Albert model converges weakly to a set of generalized Yule models via an appropriate scaling. To pursue this aim we superimpose to its graph structure a suitable set of processes that we call the planted model and we introduce an ad-hoc sampling procedure. The use of the obtained limit process represents an alternative and advantageous way of looking at some of the asymptotic properties of the Barab\'asi-Albert random graph.

[1]  Raúl Toral,et al.  Simulating non-Markovian stochastic processes. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  S. N. Dorogovtsev,et al.  Structure of growing networks with preferential linking. , 2000, Physical review letters.

[3]  Shankar Bhamidi,et al.  Universal techniques to analyze preferential attachment trees : Global and Local analysis , 2007 .

[4]  Derek de Solla Price,et al.  A general theory of bibliometric and other cumulative advantage processes , 1976, J. Am. Soc. Inf. Sci..

[5]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[6]  T. Kamae,et al.  Stochastic Inequalities on Partially Ordered Spaces , 1977 .

[7]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[8]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[9]  Laura Sacerdote,et al.  Random Graphs Associated to Some Discrete and Continuous Time Preferential Attachment Models , 2015, 1503.06150.

[10]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[11]  S. Redner,et al.  Connectivity of growing random networks. , 2000, Physical review letters.

[12]  R. Durrett Random Graph Dynamics: References , 2006 .

[13]  Krishna B. Athreya Preferential Attachment Random Graphs with General Weight Function , 2007, Internet Math..

[14]  G. Yule,et al.  A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[15]  S. Redner,et al.  Finiteness and fluctuations in growing networks , 2002, cond-mat/0207107.

[16]  S. Redner,et al.  Organization of growing random networks. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Laura Sacerdote,et al.  Scale-free behavior of networks with the copresence of preferential and uniform attachment rules , 2017, 1704.08597.

[18]  V. Roychowdhury,et al.  Re-inventing Willis , 2006, physics/0601192.

[19]  Amin Saberi,et al.  Asymptotic behavior and distributional limits of preferential attachment graphs , 2014, 1401.2792.

[20]  Laura Sacerdote,et al.  Generalized Nonlinear Yule Models , 2016, Journal of Statistical Physics.

[21]  Gerard Hooghiemstra,et al.  A preferential attachment model with random initial degrees , 2007, 0705.4151.

[22]  D J PRICE,et al.  NETWORKS OF SCIENTIFIC PAPERS. , 1965, Science.

[23]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[24]  Béla Bollobás,et al.  The Diameter of a Scale-Free Random Graph , 2004, Comb..

[25]  Jon M. Kleinberg,et al.  The Web as a Graph: Measurements, Models, and Methods , 1999, COCOON.

[26]  G. Yule,et al.  A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[27]  Benedek Valkó,et al.  Random trees and general branching processes , 2007 .

[28]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.

[29]  N. Cohen,et al.  Preferential duplication graphs , 2010, Journal of Applied Probability.

[30]  Alan M. Frieze,et al.  A general model of web graphs , 2003, Random Struct. Algorithms.

[31]  Bálint Tóth,et al.  Random trees and general branching processes , 2007, Random Struct. Algorithms.

[32]  D. A. Sprott Urn Models and Their Application—An Approach to Modern Discrete Probability Theory , 1978 .

[33]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[34]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks , 2016, Cambridge Series in Statistical and Probabilistic Mathematics.

[35]  Remco van der Hofstad,et al.  The Dynamics of Power laws: Fitness and Aging in Preferential Attachment Trees , 2017, 1703.05943.

[36]  Christian Borgs,et al.  First to market is not everything: an analysis of preferential attachment with fitness , 2007, STOC '07.

[37]  Andreas Klaus,et al.  Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches , 2011, PloS one.

[38]  Laura Sacerdote,et al.  The role of detachment of in-links in scale-free networks , 2013, ArXiv.

[39]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[40]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks: Volume 1 , 2016 .