An architecture to support information sources discovery through semantic search

In most scenarios, different information sources coexist and their content overlap, thus requiring domain knowledge to discover, understand and integrate information. In general, information sources are not designed for integration and their descriptive metadata do not suffice to enable IIS to consistently and unambiguously discover which information sources contain the required data to be integrated. This paper proposes an architecture to discover information sources through the use of semantic search techniques on top of corporative metadata repositories. Our experiments using a prototype of the proposed architecture obtained positive results with regard to precision and recall.

[1]  Fernanda Araujo Baião,et al.  A Service-based Approach for Data Integration based on Business Process Models , 2009, ICEIS.

[2]  Sjaak Brinkkemper,et al.  Conceptual Modelling in Information Systems Engineering , 2007 .

[3]  Michael Gertz,et al.  Report on the Dagstuhl Seminar , 2004, SGMD.

[4]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[5]  Nathalie Pernelle,et al.  Supporting Semantic Search on Heterogeneous Semi-structured Documents , 2010, CAiSE.

[6]  Shawn Bowers,et al.  Improving Data Discovery for Metadata Repositories through Semantic Search , 2009, 2009 International Conference on Complex, Intelligent and Software Intensive Systems.

[7]  Philip A. Bernstein The many roles of meta data in data integration , 2005, SIGMOD '05.

[8]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[9]  Marti A. Hearst Trends & Controversies: Information integration , 1998, IEEE Intell. Syst..

[10]  Magnus Boman,et al.  Conceptual modelling , 1997 .

[11]  Hyoil Han,et al.  A survey on ontology mapping , 2006, SGMD.

[12]  InduShobha N. Chengalur-Smith,et al.  The Impact of Data Quality Information on Decision Making: An Exploratory Analysis , 1999, IEEE Trans. Knowl. Data Eng..

[13]  Alon Y. Halevy Information Integration , 2009, Encyclopedia of Database Systems.

[14]  Nicola Guarino,et al.  Formal Ontology and Information Systems , 1998 .

[15]  Ahmed A. Rafea,et al.  Enhancing search results of concept annotated documents , 2009, 2009 IEEE International Conference on Information Reuse & Integration.

[16]  P. Smith,et al.  A review of ontology based query expansion , 2007, Inf. Process. Manag..

[17]  Miguel-Ángel Sicilia Metadata, semantics, and ontology: providing meaning to information resources , 2006, Int. J. Metadata Semant. Ontologies.

[18]  Fausto Giunchiglia,et al.  Lightweight Ontologies , 2009, Encyclopedia of Database Systems.

[19]  Laura M. Haas,et al.  Information integration in the enterprise , 2008, CACM.

[20]  Christoph Mangold,et al.  A survey and classification of semantic search approaches , 2007, Int. J. Metadata Semant. Ontologies.

[21]  Klaus R. Dittrich,et al.  Data Integration — Problems, Approaches, and Perspectives , 2007 .

[22]  Akrivi Katifori,et al.  Ontology visualization methods—a survey , 2007, CSUR.

[23]  InduShobha N. Chengalur-Smith Information Quality and Decision Making , 2009, Encyclopedia of Database Systems.

[24]  Euripides G. M. Petrakis,et al.  Information Retrieval by Semantic Similarity , 2006, Int. J. Semantic Web Inf. Syst..