Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang'e-5 mare basalts

[1]  B. Jolliff,et al.  Analysis and experimental investigation of Apollo sample 12032,366‐18, a chemically evolved basalt from the Moon , 2022 .

[2]  Yun Jiang,et al.  Mineral chemistry and 3D tomography of a Chang'E 5 high-Ti basalt: implication for the lunar thermal evolution history. , 2021, Science bulletin.

[3]  Chunlai Li,et al.  Characteristics of the lunar samples returned by the Chang’E-5 mission , 2021, National science review.

[4]  J. Head,et al.  MODELING THE ERUPTION OF THE LAVAS SAMPLED BY THE CHANG'E 5 MISSION , 2022 .

[5]  M. Norman,et al.  CRYSTAL SIZE DISTRIBUTION OF ILMENITE IN CHANG’E 5 BASALT CLASTS , 2022 .

[6]  M. Norman,et al.  CRYSTAL SIZE DISTRIBUTION OF PLAGIOCLASE IN BASALT FRAGMENTS FROM OCEANUS PROCELLARUM RECOVERED BY CHANG’E-5. , 2022 .

[7]  Yue-heng Yang,et al.  Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane , 2021, Nature.

[8]  Chunlai Li,et al.  Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts , 2021, Nature.

[9]  M. Norman,et al.  Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5 , 2021, Science.

[10]  C. Wöhler,et al.  Copernican‐Aged (<200 Ma) Impact Ejecta at the Chang'e‐5 Landing Site: Statistical Evidence From Crater Morphology, Morphometry, and Degradation Models , 2021, Geophysical Research Letters.

[11]  Z. Ouyang,et al.  A dry lunar mantle reservoir for young mare basalts of Chang’e-5 , 2021, Nature.

[12]  J. Head,et al.  China's Chang'e-5 landing site: Geology, stratigraphy, and provenance of materials , 2021 .

[13]  D. Breuer,et al.  Employing magma ocean crystallization models to constrain structure and composition of the lunar interior , 2021, Physics of the Earth and Planetary Interiors.

[14]  J. Head,et al.  Young lunar mare basalts in the Chang'e-5 sample return region, northern Oceanus Procellarum , 2021, Earth and Planetary Science Letters.

[15]  Xiongyao Li,et al.  Discerning Lunar Pyroclastic and Impact Glasses via Raman Spectroscopy , 2020, Journal of Geophysical Research: Planets.

[16]  J. Day Metal grains in lunar rocks as indicators of igneous and impact processes , 2020, Meteoritics & Planetary Science.

[17]  B. Jolliff,et al.  3.1 Ga crystallization age for magnesian and ferroan gabbro lithologies in the Northwest Africa 773 clan of lunar meteorites , 2017 .

[18]  A. A. Griffiths,et al.  Characterization of mesostasis regions in lunar basalts: Understanding late‐stage melt evolution and its influence on apatite formation , 2016 .

[19]  Timothy D. Glotch,et al.  The Mons Rümker volcanic complex of the Moon: A candidate landing site for the Chang'E‐5 mission , 2016 .

[20]  C. Neal,et al.  A new lunar high-Ti basalt type defined from clasts in Apollo 16 breccia 60639 , 2016 .

[21]  F. McCubbin,et al.  Petrogenesis of primitive and evolved basalts in a cooling Moon: Experimental constraints from the youngest known lunar magmas , 2015 .

[22]  J. Head,et al.  Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism , 2015 .

[23]  L. Taylor,et al.  Estimating the lunar mantle water budget from phosphates: Complications associated with silicate-liquid-immiscibility , 2014 .

[24]  Mark S. Robinson,et al.  Evidence for basaltic volcanism on the Moon within the past 100 million years , 2014 .

[25]  I. Crawford,et al.  Basaltic diversity at the Apollo 12 landing site: Inferences from petrologic examinations of the soil sample 12003 , 2014 .

[26]  F. McCubbin,et al.  The origin of young mare basalts inferred from lunar meteorites Northwest Africa 4734, 032, and LaPaz Icefield 02205 , 2014 .

[27]  A. Kearsley,et al.  Petrogenesis and chronology of lunar meteorite Northwest Africa 4472: A KREEPy regolith breccia from the Moon , 2011 .

[28]  Q. Yin,et al.  The lunar magma ocean: Reconciling the solidification process with lunar petrology and geochronology , 2011 .

[29]  Ralf Jaumann,et al.  Ages and stratigraphy of lunar mare basalts: A synthesis , 2011 .

[30]  D. DePaolo,et al.  Mechanisms for incompatible-element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032 , 2009 .

[31]  Karsten Seiferlin,et al.  Duration and extent of lunar volcanism: Comparison of 3D convection models to mare basalt ages , 2009 .

[32]  R. Korotev,et al.  Petrology, geochemistry, and age of low-Ti mare-basalt meteorite Northeast Africa 003-A: A possible member of the Apollo 15 mare basaltic suite , 2009 .

[33]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[34]  Shenghong Hu,et al.  Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas , 2008 .

[35]  Reid F. Cooper,et al.  Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior , 2008, Nature.

[36]  Keith Putirka,et al.  Thermometers and Barometers for Volcanic Systems , 2008 .

[37]  M. Anand,et al.  Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009 , 2007, Nature.

[38]  C. Floss,et al.  Evolved mare basalt magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogenesis of Antarctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007 , 2006 .

[39]  E. Olson,et al.  40Ar/39Ar dating of Apollo 12 regolith: Implications for the age of Copernicus and the source of nonmare materials , 2006 .

[40]  A. Kearsley,et al.  A petrological, mineralogical, and chemical analysis of the lunar mare basalt meteorite LaPaz Icefield 02205, 02224, and 02226 , 2006 .

[41]  D. W. Schnare,et al.  Comparative petrology, geochemistry, and petrogenesis of evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica , 2006 .

[42]  Matthew E. Pritchard,et al.  The Constitution and Structure of the Lunar Interior , 2006 .

[43]  Matthew E. Pritchard,et al.  Thermal and Magmatic Evolution of the Moon , 2006 .

[44]  K. Righter,et al.  Mineralogy and petrology of the LaPaz Icefield lunar mare basaltic meteorites , 2005 .

[45]  A. Hofmann,et al.  GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards , 2005 .

[46]  Paul D. Asimow,et al.  Adiabat_1ph: A new public front‐end to the MELTS, pMELTS, and pHMELTS models , 2005 .

[47]  I. Franchi,et al.  Pinpointing the Source of a Lunar Meteorite: Implications for the Evolution of the Moon , 2004, Science.

[48]  J. Papike,et al.  Plagioclase from planetary basalts: Chemical signatures that reflect planetary volatile budgets, oxygen fugacity, and styles of igneous differentiation , 2004 .

[49]  C. Langmuir,et al.  A hydrous melting and fractionation model for mid‐ocean ridge basalts: Application to the Mid‐Atlantic Ridge near the Azores , 2004 .

[50]  R. Jaumann,et al.  Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum , 2003 .

[51]  C. Shearer,et al.  Olivine from planetary basalts: Chemical signatures that indicate planetary parentage and those that record igneous setting and process , 2003 .

[52]  J. Jones A Liquidus Geothermometer for SNC, Lunar, and Eucritic Magmas , 2003 .

[53]  Mark S. Ghiorso,et al.  The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa , 2002 .

[54]  W. Bach,et al.  Mineral chemistry, whole-rock compositions, and petrogenesis of leg 176 gabbros: Data and discussion , 2002 .

[55]  P. Asimow,et al.  Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts, IV. Adiabatic Decompression and the Composition and Mean Properties of Mid-ocean Ridge Basalts , 2001 .

[56]  Paul G. Lucey,et al.  The titanium contents of lunar mare basalts , 2000 .

[57]  P. Asimow A model that reconciles major- and trace-element data from abyssal peridotites , 1999 .

[58]  J. Papike,et al.  Systematics of Ni and Co in olivine from planetary melt systems: Lunar mare basalts , 1999 .

[59]  J. J. Gillis,et al.  Major lunar crustal terranes: Surface expressions and crust‐mantle origins , 1999 .

[60]  B. Jolliff Large-Scale Separation of K-frac and REEP-frac in the Source Regions of Apollo Impact-Melt Breccias, and a Revised Estimate of the KREEP Composition , 1998 .

[61]  Paul D. Asimow,et al.  Algorithmic modifications extending MELTS to calculate subsolidus phase relations , 1998 .

[62]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[63]  L. Taylor,et al.  Basalt generation at the Apollo 12 site. Part 1: New data, classification, and re-evaluation , 1994 .

[64]  J. Papike,et al.  Basaltic magmatism on the Moon: A perspective from volcanic picritic glass beads , 1993 .

[65]  C. Koeberl,et al.  Gabbroic lunar mare meteorites Asuka-881757(Asuka-31) and Yamato-793169:Geochmical and mineralogical study , 1993 .

[66]  L. Taylor,et al.  A chemical model for generating the sources of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere , 1992 .

[67]  L. Taylor,et al.  Petrogenesis of mare basalts - A record of lunar volcanism , 1992 .

[68]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[69]  P. Warren The origin of pristine KREEP - Effects of mixing between UrKREEP and the magmas parental to the Mg-rich cumulates , 1988 .

[70]  H. Wiesmann,et al.  Isotopic analysis of basaltic fragments from lunar breccia 14321 - Chronology and petrogenesis of pre-Imbrium mare volcanism , 1987 .

[71]  J. Delano Pristine lunar glasses: Criteria, data, and implications , 1986 .

[72]  E. Roedder Silicate liquid immiscibility in magmas and in the system K2O-FeO-AI2O3-SiO2: an example of serendipity , 1978 .

[73]  D. Walker,et al.  The distribution of Fe and Mg between olivine and lunar basaltic liquids , 1978 .

[74]  D. Vaniman,et al.  Experimental petrology of very low Ti /VLT/ basalts , 1978 .

[75]  James W. Head,et al.  Lunar volcanism in space and time. , 1976 .

[76]  M. T. Naney,et al.  The Apollo 16 drill core - Statistical analysis of glass chemistry and the characterization of a high alumina-silica poor /HASP/ glass , 1976 .

[77]  P. C. Hess,et al.  Experimental liquid line of descent and liquid immiscibility for basalt 70017. [lunar rocks] , 2011 .

[78]  J. Papike,et al.  Pyroxenes as recorders of lunar basalt petrogenesis - Chemical trends due to crystal-liquid interaction. , 1972 .

[79]  P. Roeder,et al.  Olivine-liquid equilibrium , 1970 .

[80]  D. Lindsley,et al.  Pyroxferroite: Stability and X-ray Crystallography of Synthetic Ca0.15Fe0.85SiO3 Pyroxenoid , 1970, Science.

[81]  E. Roedder,et al.  Silicate Liquid Immiscibility in Lunar Magmas, Evidenced by Melt Inclusions in Lunar Rocks , 1970, Science.