On the expedited melting of phase change material (PCM) through dispersion of nanoparticles in the thermal storage unit

Heat transfer enhancement of phase change material (PCM) during the charging (melting) process is crucial in thermal energy storage (TES) systems. This study presents the enthalpy-based lattice Boltzmann method (LBM) simulation of ice melting enhanced through dispersion of Cu-nanoparticles in annuli. A double distribution function (DDF) model is used to solve the convection-diffusion equation including nonlinear convection and isotropic diffusion terms. The simulations are carried out under the following conditions: Pr=6.2,Ste=1,Ra=2x10^5. The effects of nanoparticles volume fraction and the position of the hot cylinder on the temperature contour, streamline and full melting time are illustrated.

[1]  Liwu Fan,et al.  An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM) ☆ , 2012 .

[2]  M. Farhadi,et al.  Lattice Boltzmann investigation for enhancing the thermal conductivity of ice using Al2O3 porous matrix , 2012 .

[3]  B. Shi,et al.  An extrapolation method for boundary conditions in lattice Boltzmann method , 2002 .

[4]  Chuguang Zheng,et al.  A coupled lattice BGK model for the Boussinesq equations , 2002 .

[5]  I. Karlin,et al.  Lattice Boltzmann method for thermal flow simulation on standard lattices. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  M. Farhadi,et al.  Lattice Boltzmann simulation of nanofluid in lid-driven cavity , 2010 .

[7]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[8]  Bastien Chopard,et al.  Lattice Boltzmann model for melting with natural convection , 2008 .

[9]  Chen,et al.  Lattice Boltzmann thermohydrodynamics. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Zhongliang Liu,et al.  Experimental investigations on the characteristics of melting processes of stearic acid in an annulus and its thermal conductivity enhancement by fins , 2005 .

[11]  M. Farhadi,et al.  Simulation of natural convection melting in an inclined cavity using lattice Boltzmann method , 2012 .

[12]  S. Chakraborty,et al.  An enthalpy-source based lattice Boltzmann model for conduction dominated phase change of pure substances , 2008 .

[13]  M. Farhadi,et al.  Lattice Boltzmann simulation of mixed convection heat transfer in eccentric annulus , 2011 .

[14]  Z. Zhang,et al.  Study of a PCM based energy storage system containing Ag nanoparticles , 2007 .

[15]  I. Vušanović,et al.  Modeling of Ice-Water Phase Change in Horizontal Annulus Using Modified Enthalpy Method , 2011 .

[16]  A micro-convection model for thermal conductivity of nanofluids , 2005 .

[17]  W. Shyy,et al.  Viscous flow computations with the method of lattice Boltzmann equation , 2003 .

[18]  Jeng-Rong Ho,et al.  LATTICE BOLTZMANN METHOD FOR THE HEAT CONDUCTION PROBLEM WITH PHASE CHANGE , 2001 .

[19]  Ritabrata Dutta,et al.  Experimental and numerical study of heat transfer in horizontal concentric annulus containing phase change material , 2008 .

[20]  Mousa Farhadi,et al.  Numerical study of melting inside concentric and eccentric horizontal annulus , 2012 .

[21]  B. Alder,et al.  Analysis of the lattice Boltzmann treatment of hydrodynamics , 1993 .

[22]  H. Beer,et al.  Solidification and melting heat transfer to an unfixed phase change material (PCM) encapsulated in a horizontal concentric annulus , 1988 .

[23]  E. Mettawee,et al.  Thermal conductivity enhancement in a latent heat storage system , 2007 .

[24]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[25]  Mario Markus,et al.  Multipeaked probability distributions of recurrence times. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Wei Shyy,et al.  Force evaluation in the lattice Boltzmann method involving curved geometry. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  R. Das,et al.  Retrieval of thermal properties in a transient conduction–radiation problem with variable thermal conductivity , 2009 .

[28]  Arun S. Mujumdar,et al.  Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section , 2000 .

[29]  Suman Chakraborty,et al.  An enthalpy-based lattice Boltzmann model for diffusion dominated solid–liquid phase transformation , 2005 .

[30]  Rachid Bennacer,et al.  Lattice Boltzmann simulation of natural convection in an open ended cavity , 2009 .

[31]  Shiyi Chen,et al.  A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit , 1998 .

[32]  Dongsheng Zhu,et al.  Preparation and Melting/Freezing Characteristics of Cu/Paraffin Nanofluid as Phase-Change Material (PCM) , 2010 .

[33]  M. Farhadi,et al.  Melting of NEPCM within a Cylindrical Tube: Numerical Study Using the Lattice Boltzmann Method , 2012 .

[34]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[35]  Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid , 2010 .

[36]  Zhen-qian Chen,et al.  Lattice Boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media , 2011 .

[37]  Adrian Bejan,et al.  Scaling theory of melting with natural convection in an enclosure , 1988 .

[38]  F. Talebi,et al.  Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid , 2010 .

[39]  Arun S. Mujumdar,et al.  Numerical study on melting of paraffin wax with Al2O3 in a square enclosure , 2012 .

[40]  Liwu Fan,et al.  Thermal conductivity enhancement of phase change materials for thermal energy storage: A review , 2011 .

[41]  M. Farhadi,et al.  Simulation of natural convection melting in a cavity with fin using lattice Boltzmann method , 2012 .

[42]  A. Louisa,et al.  コロイド混合体における有効力 空乏引力から集積斥力へ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2002 .

[43]  R. Bennacer,et al.  Some Benchmarks of a Side Wall Heated Cavity Using Lattice Boltzmann Approach , 2009 .

[44]  C. Thieulot,et al.  Smoothed particle hydrodynamics model for phase separating fluid mixtures. II. Diffusion in a binary mixture. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  S. Succi,et al.  Phase-field lattice kinetic scheme for the numerical simulation of dendritic growth. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  R. Bennacer,et al.  Lattice Boltzmann method for melting/solidification problems , 2007 .

[47]  Amar M. Khudhair,et al.  A review on phase change energy storage: materials and applications , 2004 .

[48]  Investigation of flows in solidification by using the lattice Boltzmann method , 2008 .

[49]  Baochang Shi,et al.  Lattice Boltzmann model for nonlinear convection-diffusion equations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Dmitry Medvedev,et al.  Lattice Boltzmann scheme for crystal growth in external flows. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Jeyhoon M. Khodadadi,et al.  Nanoparticle-enhanced phase change materials (nepcm) with great potential for improved thermal energy storage , 2007 .

[52]  Arun S. Mujumdar,et al.  Heat transfer in free convection-dominated melting of a phase change material in a horizontal annulus , 1998 .

[53]  Shiyi Chen,et al.  Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  S. Succi,et al.  A Lattice Boltzmann Model for Anisotropic Crystal Growth from Melt , 2002 .

[55]  F. L. Tan,et al.  Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container , 2012 .

[56]  S Succi,et al.  Lattice Boltzmann model for anisotropic liquid-solid phase transition. , 2001, Physical review letters.

[57]  Ahmed Mezrhab,et al.  Hybrid lattice-Boltzmann finite-difference simulation of convective flows , 2004 .

[58]  L. Schaefer,et al.  A thermal lattice Boltzmann two-phase flow model and its application to heat transfer problems-Part 1. Theoretical foundation , 2006 .

[59]  Francis Agyenim,et al.  A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) , 2010 .

[60]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[61]  P. Lallemand,et al.  Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  A lattice Boltzmann coupled to finite volumes method for solving phase change problems , 2009 .

[63]  Ehsan Fattahi,et al.  Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus , 2010 .

[64]  Xiaowen Shan,et al.  SIMULATION OF RAYLEIGH-BENARD CONVECTION USING A LATTICE BOLTZMANN METHOD , 1997 .

[65]  S. Y. Wu,et al.  An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials , 2012, Journal of Thermal Analysis and Calorimetry.