Osteoclast formation from mouse bone marrow cells on micro/nano-scale patterned surfaces.

[1]  H. Miyaji,et al.  Different micro/nano-scale patterns of surface materials influence osteoclastogenesis and actin structure , 2022, Nano Research.

[2]  H. Egusa,et al.  Titanium surface with nanospikes tunes macrophage polarization to produce inhibitory factors for osteoclastogenesis through nanotopographic cues. , 2021, Acta biomaterialia.

[3]  S. Bhoraskar,et al.  Surface modification of UHMWPE using ECR plasma for osteoblast and osteoclast differentiation , 2020 .

[4]  Xing‐dong Zhang,et al.  Effects of hydroxyapatite surface nano/micro-structure on osteoclast formation and activity. , 2019, Journal of materials chemistry. B.

[5]  Yingjun Wang,et al.  Regulation of an osteon-like concentric microgrooved surface on osteogenesis and osteoclastogenesis. , 2019, Biomaterials.

[6]  本間 淳,et al.  FUSION OF RAW 264.7 MACROPHAGE CELLS ON MICRO-SCALE FINE PILLAR PATTERNS [an abstract of dissertation and a summary of dissertation review] , 2019 .

[7]  J. J. van den Beucken,et al.  Combinatorial Surface Roughness Effects on Osteoclastogenesis and Osteogenesis , 2018, ACS applied materials & interfaces.

[8]  S. Waldman,et al.  Direct cell-cell communication with three-dimensional cell morphology on wrinkled microposts. , 2018, Acta biomaterialia.

[9]  A. Mazare,et al.  Nanochannelar Topography Positively Modulates Osteoblast Differentiation and Inhibits Osteoclastogenesis , 2018, Coatings.

[10]  H. Fischer,et al.  Periodic microstructures on bioactive glass surfaces enhance osteogenic differentiation of human mesenchymal stromal cells and promote osteoclastogenesis in vitro. , 2018, Journal of biomedical materials research. Part A.

[11]  H. Miyaji,et al.  EFFECT OF A NANO-SCALE FINE HOLE PATTERN ON THE DIFFERENTIATION OF RAW264.7 CELLS INTO OSTEOCLASTS , 2018 .

[12]  H. Miyaji,et al.  SUBMICRO-PATTERNING OF CURABLE DENTAL MATERIALS BY MOLDING METHODS : A SCREENING TRIAL , 2017 .

[13]  R. Miron,et al.  Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells? , 2016, Acta biomaterialia.

[14]  Bin Yu,et al.  Analysis of Osteoclastogenesis/Osteoblastogenesis on Nanotopographical Titania Surfaces , 2016, Advanced healthcare materials.

[15]  L. Addadi,et al.  Study of Osteoclast Adhesion to Cortical Bone Surfaces: A Correlative Microscopy Approach for Concomitant Imaging of Cellular Dynamics and Surface Modifications , 2015, ACS applied materials & interfaces.

[16]  Y. Deyama,et al.  Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells. , 2015, Biomedical reports.

[17]  B. Su,et al.  Scanning electron microscopical observation of an osteoblast/osteoclast co-culture on micropatterned orthopaedic ceramics , 2014, Journal of Tissue Engineering.

[18]  V. Everts,et al.  Osteoclast resorption of beta-tricalcium phosphate controlled by surface architecture. , 2014, Biomaterials.

[19]  I. Kwon,et al.  Osteoblastic and osteoclastic differentiation on SLA and hydrophilic modified SLA titanium surfaces. , 2014, Clinical oral implants research.

[20]  S. M. Sims,et al.  The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings. , 2013, Biomaterials.

[21]  L. Addadi,et al.  Substrate Adhesion Regulates Sealing Zone Architecture and Dynamics in Cultured Osteoclasts , 2011, PloS one.