Charge Density and Chemical Reactions: A Unified View from Conceptual DFT

Conceptual density-functional theory (DFT) provides a mathematical framework for using changes of the electron density to understand chemical reactions and chemical reactivity. The key idea is that by studying the response of a molecule or materials to perturbations, one can decipher its reactivity preferences. If a system reacts favorably to a perturbation, then this indicates that the system will react favorably with a certain class of reagents. Differentials of the energy may thus be interpreted as reactivity indicators. Because of the key role of energy differentials, the mathematical framework of conceptual DFT is similar to classical thermodynamics, with state functions, variational principles, and Legendre transforms. In this chapter we use this thermodynamic simile to present the mathematical underpinnings of conceptual DFT. Applications to systems of interest to organic, inorganic, and biological chemists are used to demonstrate how these abstract concepts may be applied to concrete chemical problems.

[1]  M. V. Ganduglia-Pirovano,et al.  ELECTRONIC AND NUCLEAR CHEMICAL REACTIVITY , 1994 .

[2]  Ranbir Singh,et al.  Developments in excited-state density functional theory , 1999 .

[3]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence‐Bond Theories , 1955 .

[4]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[5]  A. Savin,et al.  Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.

[6]  A. Savin,et al.  Correlation energies for some two- and four-electron systems along the adiabatic connection in density functional theory , 1999 .

[7]  Á. Nagy Hardness and excitation energy , 2005 .

[8]  P. Geerlings,et al.  Molecular Orbital-Averaged Fukui Function for the Reactivity Description of Alkaline Earth Metal Oxide Clusters. , 2009, Journal of chemical theory and computation.

[9]  R. Nalewajski Probing the Interplay between Electronic and Geometric Degrees-of-Freedom in Molecules and Reactive Systems , 2006 .

[10]  P. Fuentealba,et al.  On the condensed Fukui function , 2000 .

[11]  K. Azizi,et al.  Analysis of the Λb → Λℓ+ℓ− transition in the SM4 using form factors from full QCD , 2011, The European Physical Journal A.

[12]  R. Nalewajski,et al.  Information theoretic approach to molecular and reactive systems , 2002 .

[13]  Alejandro Toro-Labbé,et al.  Theoretical support for using the Δf(r) descriptor , 2006 .

[14]  R. Contreras,et al.  Nucleofugality index in α-elimination reactions , 2007 .

[15]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies , 1955 .

[16]  Yang,et al.  Degenerate ground states and a fractional number of electrons in density and reduced density matrix functional theory , 2000, Physical review letters.

[17]  M. Galván,et al.  Spin-potential in Kohn-Sham theory , 1992 .

[18]  R. Nalewajski Electronic Structure and Chemical Reactivity: Density Functional and Information-Theoretic Perspectives , 2003 .

[19]  P. Fuentealba,et al.  Nuclear reactivity indices in the context of spin polarized density functional theory , 2006 .

[20]  Paul W Ayers,et al.  Predicting the reactivity of ambidentate nucleophiles and electrophiles using a single, general-purpose, reactivity indicator. , 2007, Physical chemistry chemical physics : PCCP.

[21]  Paul W Ayers,et al.  What is an atom in a molecule? , 2005, The journal of physical chemistry. A.

[22]  Reformulating the Woodward-Hoffmann Rules in a Conceptual Density Functional Theory Context: the Case of Sigmatropic Reactions , 2009 .

[23]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .

[24]  J. Perdew,et al.  The Constrained Search Formulation of Density Functional Theory , 1985 .

[25]  Renato Pucci,et al.  Electron density, Kohn−Sham frontier orbitals, and Fukui functions , 1984 .

[26]  M. Berkowitz Density Functional Approach to Frontier Controlled Reactions , 1987 .

[27]  R. Parr,et al.  Local hardness equalization: exploiting the ambiguity. , 2008, The Journal of chemical physics.

[28]  Paul L. A. Popelier,et al.  Atoms in Molecules: An Introduction , 2000 .

[29]  Tonglei Li,et al.  Study of Crystal Packing on the Solid-State Reactivity of Indomethacin with Density Functional Theory , 2005, Pharmaceutical Research.

[30]  Swapan K. Ghosh,et al.  SPIN-POLARIZED GENERALIZATION OF THE CONCEPTS OF ELECTRONEGATIVELY AND HARDNESS AND THE DESCRIPTION OF CHEMICAL BINDING , 1994 .

[31]  The study of redox reactions on the basis of conceptual DFT principles: EEM and vertical quantities. , 2008, The journal of physical chemistry. A.

[32]  Á. Nagy,et al.  Variational Density-Functional Theory for an Individual Excited State , 1999 .

[33]  P. Ayers The dependence on and continuity of the energy and other molecular properties with respect to the number of electrons , 2008 .

[34]  Elliott H. Lieb,et al.  Density Functionals for Coulomb Systems , 1983 .

[35]  Ralph G. Pearson,et al.  Support for a principle of maximum hardness , 1992 .

[36]  A. Toro‐Labbé,et al.  Rationalization of Diels-Alder reactions through the use of the dual reactivity descriptor Deltaf(r). , 2008, Physical chemistry chemical physics : PCCP.

[37]  Chérif F Matta,et al.  An experimentalist's reply to "What is an atom in a molecule?". , 2006, The journal of physical chemistry. A.

[38]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[39]  Roman F. Nalewajski,et al.  Coupling Relations Between Molecular Electronic and Geometrical Degrees of Freedom in Density Functional Theory and Charge Sensitivity Analysis , 2000, Comput. Chem..

[40]  P. Senet,et al.  Relation between the Fukui function and the Coulomb hole , 2005 .

[41]  P. Szarek,et al.  The field theoretical study of chemical interaction in terms of the Rigged QED: new reactivity indices , 2007, Journal of molecular modeling.

[42]  F. Méndez,et al.  The Hard and Soft Acids and Bases Principle: An Atoms in Molecules Viewpoint , 1994 .

[43]  R. Parr,et al.  Information Theory Thermodynamics of Molecules and Their Hirshfeld Fragments , 2001 .

[44]  Cortona,et al.  Self-consistently determined properties of solids without band-structure calculations. , 1991, Physical review. B, Condensed matter.

[45]  Tonglei Li,et al.  Understanding solid-state reactions of organic crystals with density functional theory-based concepts. , 2005, Journal of Physical Chemistry A.

[46]  Peter Politzer,et al.  Chemical Applications of Atomic and Molecular Electrostatic Potentials: "Reactivity, Structure, Scattering, And Energetics Of Organic, Inorganic, And Biological Systems" , 2013 .

[47]  L. Pedersen,et al.  Molecular acidity: A quantitative conceptual density functional theory description. , 2009, The Journal of chemical physics.

[48]  P. Geerlings,et al.  Spin-polarized conceptual density functional theory study of the regioselectivity in ring closures of radicals. , 2007, The Journal of organic chemistry.

[49]  J. V. Ortiz,et al.  Removing electrons can increase the electron density: a computational study of negative Fukui functions. , 2007, The journal of physical chemistry. A.

[50]  Parr,et al.  From electron densities to Kohn-Sham kinetic energies, orbital energies, exchange-correlation potentials, and exchange-correlation energies. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[51]  P. Ayers An elementary derivation of the hard/soft-acid/base principle. , 2005, The Journal of chemical physics.

[52]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[53]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[54]  Á. Nagy,et al.  Density functional theory as thermodynamics , 1994, Proceedings / Indian Academy of Sciences.

[55]  P. Geerlings,et al.  Dual descriptors within the framework of spin-polarized density functional theory. , 2008, The Journal of chemical physics.

[56]  A. Toro‐Labbé,et al.  Theoretical study of the regioselectivity of [2 + 2] photocycloaddition reactions of acrolein with olefins. , 2009, The journal of physical chemistry. A.

[57]  R. Pearson,et al.  Kinetics and mechanism of substitution reactions of the tetrakis(trifluorophosphine) complexes of nickel(0) and platinum(0) , 1971 .

[58]  P. Geerlings,et al.  Quantum similarity of atoms: a numerical Hartree-Fock and Information Theory approach , 2004 .

[59]  Martin Head-Gordon,et al.  Quantum chemistry and molecular processes , 1996 .

[60]  Görling,et al.  Density-functional theory for excited states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[61]  P. Fuentealba,et al.  Nuclear Fukui functions from nonintegral electron number calculations , 2007 .

[62]  P. Ayers,et al.  Computing Fukui functions without differentiating with respect to electron number. II. Calculation of condensed molecular Fukui functions. , 2007, The Journal of chemical physics.

[63]  P. Geerlings,et al.  Hardness and softness reactivity kernels within the spin-polarized density-functional theory. , 2005, The Journal of chemical physics.

[64]  Alejandro Toro-Labbé,et al.  New dual descriptor for chemical reactivity. , 2005, The journal of physical chemistry. A.

[65]  S. Ghosh,et al.  Transcription of ground-state density-functional theory into a local thermodynamics. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Paul W Ayers,et al.  Do the local softness and hardness indicate the softest and hardest regions of a molecule? , 2008, Chemistry.

[67]  E. Davidson,et al.  Asymptotic behavior of atomic and molecular wave functions. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[69]  Joel S. Miller,et al.  Observation of redox-induced electron transfer and spin crossover for dinuclear cobalt and iron complexes with the 2,5-di-tert-butyl-3,6-dihydroxy-1,4-benzoquinonate bridging ligand. , 2009, Journal of the American Chemical Society.

[70]  P. Geerlings,et al.  Relativistic effects on the Fukui function , 2010 .

[71]  Understanding the large librational motion of the methyl group in aspirin and acetaminophen crystals : Insights from density functional theory , 2006 .

[72]  P. Geerlings,et al.  Local Softness and Hardness Based Reactivity Descriptors for Predicting Intra- and Intermolecular Reactivity Sequences: Carbonyl Compounds , 1998 .

[73]  James S. M. Anderson,et al.  Conceptual Density-Functional Theory for General Chemical Reactions, Including Those That Are Neither Charge- nor Frontier-Orbital-Controlled. 2. Application to Molecules Where Frontier Molecular Orbital Theory Fails. , 2007, Journal of chemical theory and computation.

[74]  Alberto Vela,et al.  SINGLET-TRIPLET GAPS AND SPIN POTENTIALS , 1998 .

[75]  Á. Nagy,et al.  Remarks on density functional theory as a thermodynamics , 2000 .

[76]  P. Geerlings,et al.  Local hardness: a critical account , 2007 .

[77]  P. Fuentealba,et al.  Theoretical study of the surface reactivity of alkaline earth oxides: local density of states evaluation of the local softness. , 2008, The Journal of chemical physics.

[78]  A. Tachibana A new visualization scheme of chemical energy density and bonds in molecules , 2005, Journal of molecular modeling.

[79]  L. H. Thomas 2 – The Calculation of Atomic Fields , 1927 .

[80]  R. Bader,et al.  Trigonal Bipyramidal and Related Molecules of the Main Group Elements: Investigation of Apparent Exceptions to the VSEPR Model through the Analysis of the Laplacian of the Electron Density , 1994 .

[81]  P. Ayers,et al.  Woodward-Hoffmann rules in density functional theory: initial hardness response. , 2006, The Journal of chemical physics.

[82]  J. C. Decius Compliance Matrix and Molecular Vibrations , 1963 .

[83]  R. Parr,et al.  Some remarks on the density functional theory of few-electron systems , 1983 .

[84]  James S. M. Anderson,et al.  Relationships between the third-order reactivity indicators in chemical density-functional theory. , 2009, The Journal of chemical physics.

[85]  P. Senet Nonlinear electronic responses, Fukui functions and hardnesses as functionals of the ground‐state electronic density , 1996 .

[86]  P. Geerlings,et al.  Can electrophilicity act as a measure of the redox potential of first-row transition metal ions? , 2007, Chemistry.

[87]  N. Petragnani,et al.  Advances in Organic Tellurium Chemistry , 2005 .

[88]  Shubin Liu,et al.  Calculation of the nuclear Fukui function and new relations for nuclear softness and hardness kernels , 1998 .

[89]  R. Contreras,et al.  Group electrophilicity as a model of nucleofugality in nucleophilic substitution reactions , 2006 .

[90]  P. Ayers The physical basis of the hard/soft acid/base principle. , 2007, Faraday discussions.

[91]  R. Carbó-Dorca,et al.  Critical thoughts on computing atom condensed Fukui functions. , 2007, The Journal of chemical physics.

[92]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[93]  Why define atoms in real space , 1994 .

[94]  Robert G. Parr,et al.  New measures of aromaticity: absolute hardness and relative hardness , 1989 .

[95]  A. Cedillo,et al.  Electrodonating and electroaccepting powers. , 2007, The journal of physical chemistry. A.

[96]  R. Parr,et al.  Higher‐order derivatives in density‐functional theory, especially the hardness derivative ∂η/∂N , 1991 .

[97]  Yingkai Zhang,et al.  Perspective on “Density-functional theory for fractional particle number: derivative discontinuities of the energy” , 2000 .

[98]  Weitao Yang,et al.  The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. , 1986, Journal of the American Chemical Society.

[99]  A. Theophilou,et al.  Density functional theory for excited states , 1994 .

[100]  P. Geerlings,et al.  Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory. , 2005, The Journal of chemical physics.

[101]  U. Sarkar,et al.  Philicity: A Unified Treatment of Chemical Reactivity and Selectivity , 2003 .

[102]  A. J. Duke,et al.  Quantum topology of molecular charge distributions. 1 , 1979 .

[103]  J. V. Ortiz,et al.  The electron-propagator approach to conceptual density-functional theory , 2005 .

[104]  P. Geerlings,et al.  A conceptual DFT approach for the evaluation and interpretation of redox potentials. , 2007, Chemistry.

[105]  Shubin Liu Steric effect: a quantitative description from density functional theory. , 2007, The Journal of chemical physics.

[106]  R. Leeuwen,et al.  Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[107]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations , 1955 .

[108]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[109]  R. Parr,et al.  Electronegativity: The density functional viewpoint , 1978 .

[110]  P. Ayers Atoms in molecules, an axiomatic approach. I. Maximum transferability , 2000 .

[111]  Paul W Ayers,et al.  An electron-preceding perspective on the deformation of materials. , 2009, The Journal of chemical physics.

[112]  Paul Geerlings,et al.  Calculation of molecular electrostatic potentials and Fukui functions using density functional methods , 1996 .

[113]  E. Fermi Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .

[114]  P W Ayers,et al.  Variational principles for describing chemical reactions. Reactivity indices based on the external potential. , 2001, Journal of the American Chemical Society.

[115]  Á. Nagy,et al.  EXCITED-STATE KOOPMANS THEOREM FOR ENSEMBLES , 1999 .

[116]  R. Parr,et al.  The concept of pressure in density functional theory , 1980 .

[117]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[118]  Francisco Méndez,et al.  Chemical Reactivity of Enolate Ions: The Local Hard and Soft Acids and Bases Principle Viewpoint , 1994 .

[119]  Direct first principles algorithm for the universal electron density functional , 1982 .

[120]  J. Korchowiec,et al.  Reactivity criteria in charge sensitivity analysis , 1996 .

[121]  R. Nalewajski On geometric concepts in sensitivity analysis of molecular charge distribution , 1992 .

[122]  P. Fuentealba,et al.  On the Density Functional Relationship between Static Dipole Polarizability and Global Softness , 1998 .

[123]  T. Gál The mathematics of functional differentiation under conservation constraint , 2006, math-ph/0603027.

[124]  A. Cedillo,et al.  Nucleophilicity index from perturbed electrostatic potentials. , 2007, The journal of physical chemistry. A.

[125]  M. Solà,et al.  Are the maximum hardness and minimum polarizability principles always obeyed in nontotally symmetric vibrations , 2002 .

[126]  James E. Huheey,et al.  Inorganic chemistry; principles of structure and reactivity , 1972 .

[127]  Paul W. Ayers,et al.  Information Theory, the Shape Function, and the Hirshfeld Atom , 2006 .

[128]  S. Borocci,et al.  Ligation of Be+ and Mg+ to NF3: Structure, stability, and thermochemistry of the Be+–(NF3) and Mg+–(NF3) complexes , 2006 .

[129]  R. Parr,et al.  On the geometric mean principle for electronegativity equalization , 1982 .

[130]  R. Bader,et al.  A physical basis for the VSEPR model of molecular geometry , 1988 .

[131]  Tonglei Li,et al.  Reaction Mechanism of 1,3,5-Trinitro-s-triazine (RDX) Deciphered by Density Functional Theory. , 2007, Journal of chemical theory and computation.

[132]  R. S. Mulliken Molecular Scientists and Molecular Science: Some Reminiscences , 1965 .

[133]  James S. M. Anderson,et al.  Perturbative perspectives on the chemical reaction prediction problem , 2005 .

[134]  R. Bader,et al.  Quantum topology of molecular charge distributions. III. The mechanics of an atom in a molecule , 1980 .

[135]  M Elango,et al.  Multiphilic descriptor for chemical reactivity and selectivity. , 2007, The journal of physical chemistry. A.

[136]  P. Geerlings,et al.  Quantum-chemical study of the Fukui function as a reactivity index , 1991 .

[137]  F. Proft,et al.  Reactivity of gas-phase, crystal and supported V2O5 systems studied using density functional theory based reactivity indices , 2008 .

[138]  P. Ayers,et al.  Crystallization force--a density functional theory concept for revealing intermolecular interactions and molecular packing in organic crystals. , 2009, Chemistry.

[139]  On Time-Independent Density-Functional Theories for Excited States , 1999 .

[140]  R. Parr,et al.  Reactivity indices and fluctuation formulas in density functional theory: Isomorphic ensembles and a new measure of local hardness , 1995 .

[141]  H. Nakatsuji Electron-cloud following and preceding and the shapes of molecules , 1974 .

[142]  R. C. Morrison,et al.  Variational principles for describing chemical reactions: Condensed reactivity indices , 2002 .

[143]  P. Ayers,et al.  Initial Hardness Response and Hardness Profiles in the Study of Woodward-Hoffmann Rules for Electrocyclizations. , 2008, Journal of chemical theory and computation.

[144]  Alejandro Toro-Labbé,et al.  Condensation of Frontier Molecular Orbital Fukui Functions , 2004 .

[145]  M. Galván,et al.  ON THE STABILITY OF HALF-FILLED SHELLS , 1996 .

[146]  C. Alsenoy,et al.  Condensed Fukui Functions Derived from Stockholder Charges: Assessment of Their Performance as Local Reactivity Descriptors , 2002 .

[147]  P. Geerlings,et al.  Conceptual DFT: the chemical relevance of higher response functions. , 2008, Physical chemistry chemical physics : PCCP.

[148]  P. Ayers,et al.  Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity” , 2000 .

[149]  A. Warshel,et al.  Quantum-mechanical calculations of solvation free energies. A combined ab initio pseudopotential free-energy perturbation approach , 1992 .

[150]  Arieh Warshel,et al.  Ab Initio Free Energy Perturbation Calculations of Solvation Free Energy Using the Frozen Density Functional Approach , 1994 .

[151]  R. Nalewajski Communication Theory Approach to the Chemical Bond , 2004 .

[152]  J. Gázquez The Hard and Soft Acids and Bases Principle , 1997 .

[153]  Robert G. Parr,et al.  Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited , 2000 .

[154]  Roman F. Nalewajski,et al.  Use of Fisher information in quantum chemistry , 2008 .

[155]  Partial communication channels of molecular fragments and their entropy/information indices , 2005 .

[156]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[157]  R. Parr,et al.  Constrained‐search method to determine electronic wave functions from electronic densities , 1993 .

[158]  A. Tachibana Spindle structure of the stress tensor of chemical bond , 2004 .

[159]  A. Tachibana,et al.  Stress tensor of the hydrogen molecular ion , 2009, 0912.2792.

[160]  R. Parr,et al.  Principle of maximum hardness , 1991 .

[161]  R. Nalewajski,et al.  Information distance analysis of molecular electron densities , 2002 .

[162]  P. Fuentealba,et al.  Chemical bonding and reactivity: a local thermodynamic viewpoint , 1999 .

[163]  A. Warshel,et al.  Frozen density functional approach for ab initio calculations of solvated molecules , 1993 .

[164]  J. Grunenberg,et al.  Characterizing chemical bond strengths using generalized compliance constants. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[165]  R. Parr,et al.  Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. , 2006, The Journal of chemical physics.

[166]  R. Contreras,et al.  Electrofugality index for benzhydryl derivatives , 2007 .

[167]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[168]  James S. M. Anderson,et al.  Conceptual Density-Functional Theory for General Chemical Reactions, Including Those That Are Neither Charge- nor Frontier-Orbital-Controlled. 1. Theory and Derivation of a General-Purpose Reactivity Indicator. , 2007, Journal of chemical theory and computation.

[169]  Robert S. Mulliken,et al.  A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities , 1934 .

[170]  Á. Nagy,et al.  Variational density-functional theory for degenerate excited states , 2001 .

[171]  P. Ayers,et al.  Chargephilicity and chargephobicity: Two new reactivity indicators for external potential changes from density functional reactivity theory , 2009 .

[172]  M. Berkowitz,et al.  Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities , 1988 .

[173]  M. Solà,et al.  The hardness profile as a tool to detect spurious stationary points in the potential energy surface. , 2004, The Journal of chemical physics.

[174]  P. Chattaraj,et al.  Chemical Reactivity and Excited-State Density Functional Theory , 1999 .

[175]  Paul W Ayers,et al.  Understanding the Woodward-Hoffmann rules by using changes in electron density. , 2007, Chemistry.

[176]  T. Hoffmann-Ostenhof,et al.  "Schrödinger inequalities" and asymptotic behavior of the electron density of atoms and molecules , 1977 .

[177]  P. Fuentealba,et al.  Comparison among four different ways to condense the Fukui function. , 2005, The journal of physical chemistry. A.

[178]  Shubin Liu,et al.  Face-integrated Fukui function: understanding wettability anisotropy of molecular crystals from density functional theory. , 2005, Journal of the American Chemical Society.

[179]  P. Geerlings,et al.  Nuclear Fukui function and Berlin’s binding function: Prediction of the Jahn–Teller distortion , 2001 .

[180]  Shridhar R. Gadre,et al.  Molecular electrostatic potentials: A topographical study , 1992 .

[181]  P. Chattaraj,et al.  A Density Functional Treatment of Chemical Reactivity and the Associated Electronic Structure Principles in the Excited Electronic States , 1998 .

[182]  Á. Nagy,et al.  Local kinetic energy and local temperature in the density‐functional theory of electronic structure , 2002 .

[183]  Cyclopolymerization reactions of diallyl monomers: exploring electronic and steric effects using DFT reactivity indices. , 2009, The journal of physical chemistry. A.

[184]  Patrick Bultinck,et al.  Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.

[185]  J. Korchowiec,et al.  Charge sensitivity approach to electronic structure and chemical reactivity , 1997 .

[186]  Joel S. Miller,et al.  Oxidation leading to reduction: redox-induced electron transfer (RIET). , 2009, Angewandte Chemie.

[187]  R. Nalewajski Chemical reactivity concepts in charge sensitivity analysis , 1995 .

[188]  Pratim K. Chattaraj,et al.  Chemical reactivity theory : a density functional view , 2009 .

[189]  R. Parr,et al.  Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[190]  P. Ayers,et al.  Universal mathematical identities in density functional theory: results from three different spin-resolved representations. , 2008, The Journal of chemical physics.

[191]  G. Klopman,et al.  Chemical reactivity and the concept of charge- and frontier-controlled reactions , 1968 .

[192]  A. Cedillo,et al.  Comparison between the frozen core and finite differences approximations for the generalized spin-dependent global and local reactivity descriptors in small molecules , 2006 .

[193]  P. Geerlings,et al.  Philicity indices within the spin-polarized density-functional theory framework. , 2006, The Journal of chemical physics.

[194]  R. Pearson Maximum Chemical and Physical Hardness , 1999 .

[195]  S. Saha,et al.  A comprehensive decomposition analysis of stabilization energy (CDASE) and its application in locating the rate-determining step of multi-step reactions. , 2009, Physical chemistry chemical physics : PCCP.

[196]  P. Ayers,et al.  Potentialphilicity and potentialphobicity: Reactivity indicators for external potential changes from density functional reactivity theory. , 2009, The Journal of chemical physics.

[197]  M. Berkowitz,et al.  A classical fluid‐like approach to the density‐functional formalism of many‐electron systems , 1985 .

[198]  N. Koga,et al.  Revisiting Markovnikov addition to alkenes via molecular electrostatic potential. , 2001, The Journal of organic chemistry.

[199]  J. D. Morgan,et al.  Bounds on the decay of electron densities with screening , 1981 .

[200]  R. Parr,et al.  Beyond electronegativity and local hardness: Higher-order equalization criteria for determination of a ground-state electron density. , 2008, The Journal of chemical physics.

[201]  E. Chamorro,et al.  Condensed-to-atoms electronic Fukui functions within the framework of spin-polarized density-functional theory. , 2005, Journal of Chemical Physics.

[202]  Qin Wu,et al.  A direct optimization method for calculating density functionals and exchange–correlation potentials from electron densities , 2003 .

[203]  Ralph G. Pearson,et al.  Recent advances in the concept of hard and soft acids and bases , 1987 .

[204]  M. Dewar A critique of frontier orbital theory , 1989 .

[205]  P. Ayers Electron localization functions and local measures of the covariance , 2005 .

[206]  P. Ayers Strategies for computing chemical reactivity indices , 2001 .

[207]  Tonglei Li Understanding the polymorphism of aspirin with electronic calculations. , 2007, Journal of pharmaceutical sciences.

[208]  R. Parr,et al.  Long‐range behavior of natural orbitals and electron density , 1975 .

[209]  H. Nakatsuji Common nature of the electron cloud of a system undergoing change in nuclear configuration , 1974 .

[210]  James S. M. Anderson,et al.  Indices for predicting the quality of leaving groups. , 2005, Physical chemistry chemical physics : PCCP.

[211]  Kemei Pei,et al.  Gas-phase chemistry of nitrogen trifluoride NF3: structure and stability of its M+-NF3 (M = H, Li, Na, K) complexes , 2004 .

[212]  R. Parr,et al.  Information theory, atoms in molecules, and molecular similarity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[213]  R. Nalewajski Information Theoretic Approach to Fluctuations and Electron Flows between Molecular Fragments , 2003 .

[214]  R. Parr,et al.  Variational method for determining the Fukui function and chemical hardness of an electronic system , 1995 .

[215]  P. Fuentealba,et al.  Chemical Reactivity in the {N,NS,v(r)} Space , 2003 .

[216]  P. Senet Kohn-Sham orbital formulation of the chemical electronic responses, including the hardness , 1997 .

[217]  P. Geerlings,et al.  A new view on the spectrochemical and nephelauxetic series on the basis of spin-polarized conceptual DFT. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[218]  Paul Geerlings,et al.  N-derivative of Shannon entropy of shape function for atoms , 2005 .

[219]  R. Nalewajski Entropic Measures of Bond Multiplicity from the Information Theory , 2000 .

[220]  P. Ayers Can one oxidize an atom by reducing the molecule that contains it? , 2006, Physical chemistry chemical physics : PCCP.

[221]  M. Berkowitz,et al.  On the concept of local hardness in chemistry , 1985 .

[222]  Robert G. Parr,et al.  Legendre transforms and Maxwell relations in density functional theory , 1982 .

[223]  Wilfried Langenaeker,et al.  Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density , 2002, J. Comput. Chem..

[224]  Paul W. Ayers,et al.  Computing the Fukui function from ab initio quantum chemistry: approaches based on the extended Koopmans’ theorem , 2007 .

[225]  P. Chattaraj,et al.  Molecular reactivity in the ground and excited electronic states through density-dependent local and global reactivity parameters , 1999 .

[226]  Carlos Cárdenas,et al.  Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. , 2009, The journal of physical chemistry. A.

[227]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[228]  T. Kruck Trifluorophosphine Complexes of Transition Metals , 1967 .

[229]  A. Toro‐Labbé,et al.  Regaining the Woodward-Hoffmann rules for chelotropic reactions via conceptual DFT , 2010 .

[230]  P Coppens,et al.  Chemical applications of X-ray charge-density analysis. , 2001, Chemical reviews.

[231]  P. Popelier,et al.  The full topology of the Laplacian of the electron density: scrutinising a physical basis for the VSEPR model. , 2003, Faraday discussions.

[232]  Roman F. Nalewajski,et al.  Information principles in the theory of electronic structure , 2003 .

[233]  E. Fermi A Statistical Method for the Determination of Some Atomic Properties and the Application of this Method to the Theory of the Periodic System of Elements , 1975 .

[234]  A. Vela,et al.  Chemical reactivity in spin-polarized density functional theory , 1988 .

[235]  T. Gál Functional differentiation under conservation constraints , 2002 .

[236]  Philip Coppens,et al.  Charge densities come of age. , 2005, Angewandte Chemie.

[237]  P. Geerlings,et al.  Quantum similarity study of atomic density functions: insights from information theory and the role of relativistic effects. , 2007, The Journal of chemical physics.

[238]  P. Fuentealba Reactivity indices and response functions in density functional theory 1 Dedicated to Professor Yves , 1998 .

[239]  Roman F. Nalewajski,et al.  Electrostatic effects in interactions between hard (soft) acids and bases , 1984 .

[240]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[241]  Reinhard Nesper,et al.  A New Look at Electron Localization , 1991 .

[242]  A K Theophilou,et al.  The energy density functional formalism for excited states , 1979 .

[243]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[244]  M. Reiher,et al.  Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory. , 2008, The Journal of chemical physics.

[245]  P. Ayers,et al.  An example where orbital relaxation is an important contribution to the Fukui function. , 2005, The journal of physical chemistry. A.

[246]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[247]  P. Szarek,et al.  Electronic stress tensor description of chemical bonds using nonclassical bond order concept. , 2008, The Journal of chemical physics.

[248]  R. Bader,et al.  Quantum Theory of Atoms in Molecules–Dalton Revisited , 1981 .